DOCUMENT RESUME

ED 222 172

IR 010 405

AUTHOR TITLE Renckly, Thomas R.; Orwig, Gary

Curriculum Viewed as a Binary System: An Approach to

the Determination of Sequence. A Project Report.

PUB DATE

68p.; Paper presented at the Interservice/Industry Conference on Training and Equipment (3rd, Orlando,

FL, November 29-December 2, 1981).

EDRS PRICE DESCRIPTORS

MF01/PC03 Plus Postage.

*Computer Oriented Programs; Computer Programs; *Curriculum Design; *Educational Objectives; Flowcharts; Instructional Design; *Mathematical

Models; Pacing; Pilot Projects; *Vertical

Organization

ABSTRACT

A description of the development and application of a hierarchical/binary model by which a curriculum may be analyzed to determine alternative instructional sequences given particular instructional objectives and limiting constraints forms the body of this report. The background of the project as part of an effort by the U.S. Navy Recruiting Command to develop training programs for 16 closely related jobs is described; the complexity of the curriculum design process is discussed; the development of an instructional objectives hierarchy is outlined; and the characteristics and uses of binary matrices, transitive relations analysis, and directed graphs (digraphs) in the ranking of instructional objectives are detailed. The method employed to establish an instructional objectives hierarchy during the project is then recounted in step-by-step fashion, drawing on the preceding examination of ranking techniques. A computer algorithm which replicates the design process presented in the report is briefly discussed. Accompanying the text are 13 figures, 4 analytical tables, a 21-item bibliography, and 2 appendices--the first, a detailed computer flowchart for developing a sequence digraph from a set of curriculum objectives and the second, an Applesoft BASIC program listing based upon the flowchart presented in the first appendix. (JL)

* Reproductions supplied by EDRS are the best that can be made
from the original document.

. RO10 405

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)

- This document has been reproduced as received from the person or organization originating it.
- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent official NIE position or policy.

CURRICULUM VIEWED AS A BINARY SYSTEM:

AN APPROACH TO THE DETERMINATION OF SEQUENCE

A PROJECT REPORT

bу

Thomas R. Renckly and Gary Orwig

"PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

Thomas R. Renckly

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

CURRICULUM VIEWED AS A BINARY SYSTEM: AN APPROACH TO THE DETERMINATION OF SEQUENCE - A PROJECT REPORT

Thomas Ř. Renckly Education Specialist Curriculum Design Coordinator U. S. Navy Recruiting Command/ Orlando, Florida Gary Orwig, Ph.D.
Asst. Professor
College of Education
University of Central Florida
Orlando, Florida

ABSTRACT

Determining alternative curriculum sequences is a tedious task involving many individuals and analysis of large amounts of curriculum-related information. Because these tasks are not readily reducible to mathematical operations, and because educators and curriculum designers are generally not so inclined, computer intervention into this design process has been meager. The project reported herein describes the development and application of a model by which a curriculum may be analyzed to determine alternative instructional sequences based upon curriculum objectives and limiting constraints. The project's primary goal is to ultimately apply the model to the analysis and design of instructional sequences for 16 closely related courses currently under development by the U. S. Navy Recruiting Command.

Table of Contents

The Project		
Complexity in the Design Process	• • • • • •	. 2
Characteristics of a Binary Matrix		
Transitive Relations and Directed Graphs		. 9
The Project's Method		12
Limitations Within A Curricular System		
Bibliography		
Appendix A		
Annendix B		

THE PROJECT

The U. S. Navy Recruiting Command has undertaken the task of developing training programs for 16 individual, yet closely related jobs (or billets) within the duty called recruiting. Although development of training programs is not new to the military, the approach to this particular curriculum design problem is. Due to the close interrelationship between and among each of the 16 courses under development, there is heavy reliance upon instructional sequence. For example, several competencies have been identified which overlap in many of the 16 courses. Because such overlaps parallel real-life recruiting practices, they were not avoided. It is educationally sound practice to structure student learning experiences so as to simulate reality as much as possible. Some educational psychologists believe this produces maximum learning transfer.

However, the payback comes in the form of an increased demand on curriculum sequencing. A non-sequitor or ill-sequenced curriculum can damage the realism of learning experience. It can also reduce the student's ability to internalize the concepts presented. The student may appear to perform satisfactorily in the school environment but become disoriented in trying to perform a similar task in the real-world environment. Thus the need for well-sequenced instruction.

The classical approach to determining acceptable instructional sequences has characteristically been human intuition. Such an approach is time-consuming in that it seldom produces an adequate sequence on the first attempt. Additionally, considerable work is involved with each iteration. In this current project, intuition is simply not sufficient for the task of aligning 16 courses into a unified sequence.

1

In any curriculum design problem, there are a myriad of variables which may dramatically affect the ultimate instructional sequence.

However, a model exists in the literature which is capable of dealing with complex systems of interacting variables. This model, known as Interpretive Structural Modeling (ISM), has been successfully applied to the sequencing of process elements in a number of design projects in the fields of engineering, agriculture and a host of other complex scientific and social problems. Unfortunately, ISM has seen limited use in the field of education as a tool for planning and design. In fact, this writer has found only one such use. This has been accomplished primarily by Sato and his colleagues in Japan. This has been accomplished upon the work that has already been done in this area with the hope that successful development here may spawn more educational uses of ISM in this country.

As the initial project report, this paper will present some basic theory underlying the ISM concept as well as a method which shows great promise in assisting the curriculum designer in determining appropriate alternative instructional sequences.

COMPLEXITY IN THE DESIGN PROCESS

The instructional systems approach, or any systematic approach to instructional design for that matter, is anchored in mathematical modeling. It has long been recognized that a systems approach to instructional development is patterned after the scientific method which is in itself a modeling approach.

The question then arises as to why the design of instruction is not treated by a mathematical approach to approximating the shape and scope of a curriculum! In their text, Programmed Learning in Perspective, the authors allude to the mathematical character of curriculum. They describe a quasi-mathematical technique (termed the matrix technique) which is useful in determining optimum unit sequencing within programmed instructional material. Davies further generalized this procedure, demonstrating its utility in optimizing presentation sequences for objectives of an entire course of instruction. The logical extension of this work leads one to believe there may be a method by which a complex curriculum composed of disjointed competencies might be alternatively sequenced.

Successful instructional design models call for some sort of determination of sequence at some time during the design process. Often this is achieved through construction of objective trees (or hierarchies). In fact, instruction in the building of such hierarchies is often in great detail 9- testimony to its importance in the instructional design process. To anyone familiar with such a task, it is immediately obvious that instructional hierarchies are complex structures not only to build, but also to interpret. The casual observer is often unable to visualize the many possible sequencing strategies from the maze of lines displayed. Such insight requires a knowledge of the course content and at least some grounding in basic learning psychology. Yet, even if this prior knowledge is assumed, the task of choosing an appropriate sequence from all the possible sequences displayed on the hierarchy is still not easy. Mathematical modeling and operations research provide some interesting algorithms, however, which demonstrate the potential to assist in solving complex instructional sequencing problems.

_/\$

In their paper Unified Program Planning, Hill and Warfield describe a method of reducing complex systems of elements (in our case, objectives) into a matrix which describes their mutual relationships. 10 They call this a self-interaction matrix because it contains information relating to the interaction of each element with itself and the others in the system. The authors define such a matrix as containing enough information to construct an objectives tree.

For this project, their matrix method is used in developing an objectives hierarchy from an initial set of course objectives. The worth of this matrix method is in its ability to produce a hierarchy which actually contains more information than hierarchies developed by other means. As an example of the kinds of information stored, and generally gleaned from typical objectives trees, consider the hierarchy of a hypothetical curriculum containing 15 interrelated objectives as shown in Figure 1 below.

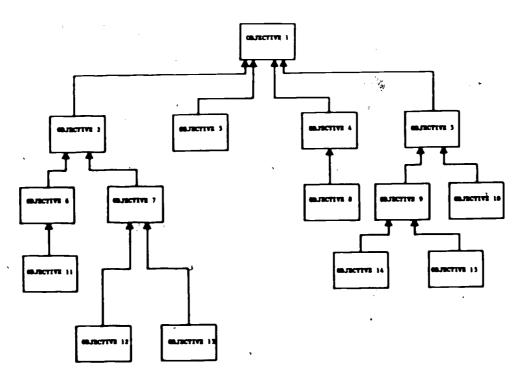


Figure 1. An objectives hierarchy containing 15 interrelated objectives for a hypothetical curriculum.

-Several bits of information are implicitly stored in this hierarchy. For example, OBJECTIVE 1 appears to be the terminal objective for the curriculum. That is, all other objectives either directly or indirectly terminate at OBJECTIVE 1. Also, OBJECTIVES 3, 8, 10, 11, 12, 13, 14 and 15 are at base levels with no supporting objectives. Thus, these are ideal starting points for sections or modules of instruction. Yet another bit of information available from the hierarchy is implied by the arrows connecting the various objectives. Their pattern indicates the existence of partitions between objective clusters (though such partitions are purely arbitrary). For example, one such partition could be OBJECTIVEs 11, 6, 2 and 1; another, OBJECTIVEs 13, 12, 7, 2 and 1; another, OBJECTIVES 8, 4, and 1; still another, OBJECTIVES 15, 14. 9. 5. and 1; etc. Although such partitions are arbitrary, these groupings give some indication of the amount of information potentially stored in an objective hierarchy. All these bits of information taken together represent a detailed picture of how each objective interacts with all the rest in this particular hypothetical curriculum.

Yet, a completely different class of interactions exists which also come to bear on a curriculum. This class contains such instruction-related items as resource constraints (money, manpower, and time), student needs, types of learning activities available to students to meet course objectives, types and timing of measurement tests, etc. Each of these has an effect on whether or not a given instructional sequence will work effectively. However, these interactions cannot be stored or displayed on a typical objectives hierarchy, such as that in Figure 1. Even by looking at the hierarchy, it is impossible to discern if such interactions were taken into consideration in the hierarchy's development.

of course, this information could be superimposed onto the hierarchy; however, this could very easily complicate the diagram to the point that interpretation becomes impossible. The reason for this is that there seems to be an upper limit on the amount of information that one human can process and operate on at any given time. "Research tentatively shows that the amount of information man is capable of processing is limited, and more data...do not necessarily increase the quality of decisions in the same proportion." It must be made clear at this juncture that the self-interaction matrix is not intended to replace the objectives tree, but only to enhance it. "The self-interaction matrix...is not as clear as the objectives tree for viewing the relationships among objectives, but it incorporates significant advantages in relating objectives to constraints, alterables and needs" inherent in the instructional system. Thus, in this project, both the matrix and the objectives tree are utilized to their maximum advantages.

In actuality, the curriculum designer, the teaching staff, and the management personnel each recognize a different set of such interactions as mentioned above which impact on the curriculum. Thus, the designer must spend considerable time with teachers to develop an instructional hierarchy which takes into account as many of the ancillary interactions as possible. And when they finally come to an agreement on a reasonable teaching sequence, they may find (to their dismay) that the administration rejects the plan because of some constraining factor neither the designer nor the teachers knew about. Such situations are common and illustrate the need for a model which can contain and process much more curriculum-relevant information than is currently possible. The major requisites of such a model would have to be: convenience, simplicity and utility.

Convenience can be described as the ease of applying the model to the design problem. Simplicity refers to the quantity of information that must be provided by the user for the model's operation. And utility can be expressed as the model's adaptability to a general class of curriculum design problems - from the relatively simple task of sequencing information within a programmed text to the highly complex task of determining the sequence for effective learning in a spiraled "K through 12" educational network. ISM, the model used in this project, possesses these primary requisites in varying degrees and is thus a likely candidate for the curriculum design problem.

CHARACTERISTICS OF A BINARY MATRIX

Before detailing the results and current status of the project, we should first clarify the terms used. The literature on the subject is primarily mathematical. For this discussion, the mathematics have been simplified in some places, and eliminated altogether in others. In its place, intuitive arguments have been used. Readers interested in the actual mathematical derivations are referred to the work of Warfield. 14

A binary matrix is a square array of elements whose values are either 1 or, 0. If all the main diagonal elements (from upper left to lower right in the array) are 1s, the matrix is said to be reflexive. Thus, an irreflexive matrix has some 0s on its main diagonal. An irreflexive matrix must be made reflexive in order to be analyzed by the ISM matrix method. Fortunately, this is easily accomplished by adding to the irreflexive matrix an identity matrix. This is also a binary matrix with 1s along the main diagonal and 0s everywhere else.

The rows of a matrix are usually referred to by the letter i, while the columns are usually referred to by the letter j. Every matrix element occupies a position which is at the intersection of a row and column. Thus, any arbitrary element of a matrix can be referred to as the (i,j) element.

If a matrix element (i,j) and its "mirror-image" element (j,i) are the same value (either 1 or 0), then the matrix is said to be symmetric. The degree of symmetry depends upon how many elements (i,j) are matched to their "mirror-images". To illustrate this more clearly, note the mirror-image quality in the binary matrix in Figure 2 on both sides of the main diagonal. For clarity, the zeros have been removed.

	1	2	3	4	5	,
1	k			1	1	
1 2 3 4 5		`1.	1		1	
3		1	`لہ	_	ļ	
4	1			Ţ,	1	
5	1	1		1	<u>`1</u>	,

Figure 2. Mirror Image Symmetry Above and Below the Main Diagonal (dashed)

sidered symmetric for purposes of this method if the number of assymetric points are small. In reality, an assymetric matrix yields the best instructional hierarchy. Thus, the degree of assymetry in the matrix determines the richness of the resulting hierarchy. However, this depends upon the nature of the objectives under consideration and the nature of the interactions among objectives - both of which are dependent on the type of curriculum being designed.

TRANSITIVE RELATIONS AND DIRECTED GRAPHS

In determining an appropriate curriculum sequence, considerable thought must be given to how each instructional objective relates to all other objectives in the curriculum. During the so-called "front-end analysis" phase of a design project, relationships between what the student needs and what the curriculum will offer to meet those needs are more likely to be philisophical intuitions than rigorous proofs. The mathematical character of ISM, however, requires a more detailed analysis of such relationships. These relationships are logical rather than mathematical.

as illustrated in Figure 3. Figure 3A shows that objective <u>a</u> relates to objective <u>b</u>, and that <u>b</u> relates to <u>c</u>. However, objectives <u>a</u> and <u>c</u> are not directly related to one another. Clearly, if objective <u>b</u> were removed from the curriculum, objectives <u>a</u> and <u>c</u> would exist as isolated entities. Such a relation among objectives is called <u>intransitive</u> because there is no direct relation or, or connection, between objectives a and <u>c</u>.

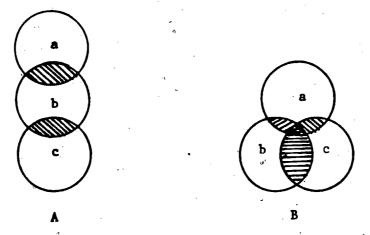


Figure 3. Two Types of Relationships Among Objectives a, b, and c.

q

Figure 3B, on the other hand, indicates that all objectives are directly related to each other. If any one of them is removed, the remaining two are still linked together through a binding relationship. A <u>transitive</u> relation is one in which each objective relates, or is somehow linked to the others in the group.

Though we have used the term "relation" numerous times, we have not yet clearly defined it. A <u>relation</u> is a phrase or term that shows how two or more elements (or objectives) interconnect, or link, to one another. Whether or not a relation is transitive depends not so much on what relation is used, as on the situation in which it is used.

"is contained within" <u>b</u>, and if <u>b</u> "is contained within" <u>c</u>, then it follows that <u>a</u> "is contained within" <u>c</u>. We can visualize this relation in Figure 4. Any objectives <u>a</u>, <u>b</u>, and <u>c</u> for which this relation holds true is considered a transitive set of objectives. It must be borne in mind, however, that even though the relation is transitive, not all objectives will suit it. If one particular relation is not transitive across an entire set of objectives under consideration, a relation that does apply must be found. Each new relation chosen, of course, must be similarly tested to insure transitivity within the entire objective set.

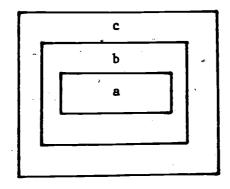


Figure 4. Visualization of the relation "is contained within".

Some relations are intransitive in all but the most specific of situations. For example, Warfield (1981), has reported that the relation "obeys" fails the transitivity test: 15 if a "obeys" b, and if b "obeys" c, a may not necessarily "obey" c. In fact, many relations are situation specific. They must be carefully considered in the context of the entire objective set.

Once a transitive relation has been identified, it remains to be discovered how the relation specifically affects each pair of objectives. Does, for example, the relation link objective <u>a</u> to objective <u>b</u>, or vice versa? A simple example should serve to illustrate this point. Consider the transitive relation "depends upon prior accomplishment of". If objective <u>a</u> "depends upon prior accomplishment of" objective <u>b</u>, then clearly, <u>b</u> cannot possibly "depend upon prior accomplishment of" objective <u>a</u>. In addition to illustrating assymetry, this example also illustrates the concept of <u>directability</u>. In the above example, an arrow could be drawn between objectives <u>a</u> and <u>b</u> with the arrowhead pointing toward objective <u>a</u> to show that <u>a</u> "depends upon prior accomplishment of" <u>b</u>.

If all such directed relations between objectives are considered, a picture of the interactions can be obtained. Such a picture is known as a directed graph. Warfield has shown that any directed graph or digraph possesses an associated binary matrix. A given binary matrix, however, may produce a number of alternative digraphs. Any one of them could be used as an objectives hierarchy to describe the interrelationships among instructional objectives. The binary matrix needed to produce the digraph is called the reachability matrix.

If transitive and assymetric, this matrix can be manipulated to produce a digraph (otherwise known as an objectives hierarchy). The procedure, described by Warfield, requires the formation of tables consisting of various arrangements of objectives. The actual procedure followed for this project will be described in greater detail in the next section.

THE PROJECT'S METHOD

The process of generating a digraph from a set of curriculum objectives is a straight-forward approach composed of the following steps:

- 1. Identify the objectives of the curriculum.
- 2. Determine a transitive relation which applies to the objectives in the context of the instructional situation.
- 3. Place objective relations into a matrix format termed a self-interaction matrix.
- 4. Manipulate the matrix into a suitable form termed a reachability matrix.
- 5. Re-order the rows and columns of the reachability matrix and partition it to reflect hierarchial levels termed a modified reachability matrix.
- 6. Compute a hierarchy (or <u>digraph</u>) from the modified reachability matrix.

The curriculum design project described in this paper follows this six step process for generating hierarchies and determining instructional sequences. Since the approach is both complex and time consuming, computer algorithms have been designed to perform most of this work. The remainder of this paper details the process followed in the Navy curriculum project.

Step 1. After the front-end analysis had been completed for the 16 courses under development, a listing of tasks required for training were identified. And from these, a series of learning objectives were developed for each course. One course was used for the pilot study in this project.

Step 2. The transitive relation is necessary to accomplish was agreed upon by the subject matter specialists, the curriculum design staff and the approving board for curriculum development. This relation was used in the analysis of the relationships between every possible pair of objectives. Since 18 objectives were originally identified for training in the pilot course, 18 x 18 (=324) distinct objective pairs were analyzed via the agreed upon relation.

Step 3. For each of the 324 objective pairs, a 1 was placed into the corresponding cell of a matrix, if the relation was true. If, however, the relation was false for a particular pair, a 0 was placed in the appropriate matrix cell. The self-interaction matrix which resulted is shown in Figure 5.

Objective Number

-			1	2	3	4	5	6	7	8	9	0	1	1 2	1 3	1	1 5	1 6	7	8
	1	ſ	1	0	0	0	0	1	1	0	0	0	1	0	0	1	1	0	1	0
	2	ı	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	3	- [0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0 [
ъ	4	- 1	0	0	0	1	0	0	0	0	0	0	Ó	0	0	0	1	0	0	0
j	5	Ą	0	0	1	1	1	0	0-	0	0	1	0	0	1	0	0	0	0	0
e	6	- 1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
c .	7		0	0	0	0	1	0	1	1	0	0	1	0	0	1	1	0	1	1
t	8	1	0	0	0	0	1.	0	1	1	0	1	1	0	0	1	0	0	0	0
i	9	- 1	0	0	1	0	1	0	1	1	1	0	0	0	0	1	0	0	0	0
v ,	10		0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0
e	11	1	0	0	0	0	1	0	1	0	0	0	1	1	0	1	0	0	1	0
	12	- 1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0
N	13	- 1	0	0	1	1	1	0	0	0	1	1	0	0	1	0	0	0	0	0
·u	14	- 1	0	0.	0	0	1	0	1	0	0	0	0	0	1	1	0	Ó	1	1
m	15	- 1	0	Ō	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
р	16	I	0	0	0	Ō	0	0	0	0	0	0	0	1	0	0	1	Ţ	0	0
e	17	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
r	18		0	Q.	0	0	0	0	. 0	0	1	0	0	0	0	0	0	0	U	1

Figure 5. A Self-Interaction Matrix for the Pilot Course

Warfield describes an algorithm with which a computer can be programmed to accomplish this data entry step with reduced effort on the part of the user. 18 The algorithm has been modified for use in this project.

After creation of the self-interaction matrix of Figure 5, it was loaded into a BASIC language microporcessor via a prompting routine developed by Orwig. The flowchart of this routine is shown in Figure 6.

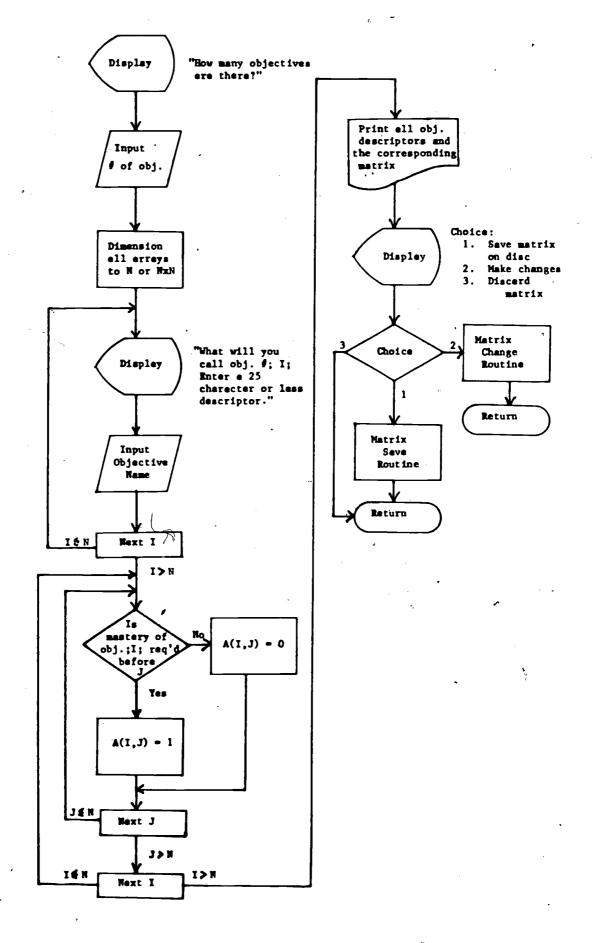


Figure 6. A Prompting Routine for Matrix Data Entry

Step 4. The self-interaction matrix of Figure 5 must be manipulated into a reachability matrix before further analysis can be performed. This manipulation involves raising the self-interaction matrix (A) to successive powers (squared, cubed, etc, by Boolean multiplication) until the following equality is met: Aⁿ = Aⁿ⁺¹. An algorithm used to accomplish this multiplication process is presented in flowchart form in Figure 7. (A flowchart of the entire computer program developed by the authors appears in the Appendix). According to theory, if there are N objectives in the matrix, the reachability matrix will be derived in N-1 or less iterations. The self-interaction matrix for the pilot course (Figure 8) was converted to reachability form in four iterations. In other words, the matrix of Figure 8 multiplies out in four iterations to form the reachability matrix in Figure 9, which satisfies the equality: A³ = A⁴.

Objective Number

	1 2	2 3	4	5 6	7	8	9	1	1	1 2	1	1	1 5	1 6	1	18
1 0 2 b 3 J 4 e 5 c 6 t 7 i 8 v 9 e 10 11 N 12 u 13 m 14 b 15	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000		0 0 0 0 0 0 0	000000	000010010000100	100000110110000	00000000011000	000010000000110	100000111010010		000000000000000	1000001001100	00000010000010
e 16 r 17 18	0 (0 0	0 (0 0	0 0 0	0 0 0	0 0 1	010	0 0	1 0 0	000	000	1 0 0	1	0	0 0 1

Figure 8. The Self-Interaction Matrix of Figure 5.

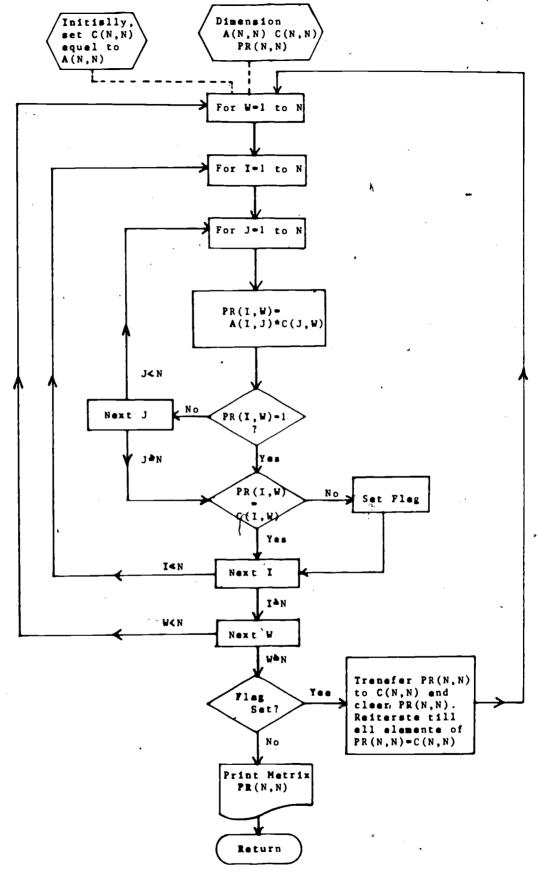


Figure 7. An algorithm to convert a self-interection metrix A(N,N) into a reachebility metrix PR(N,N)

Step 5. The purpose of this step is to partition the reachability matrix into submatrices which reflect the levels within the instructional hierarchy. The resulting partitioned matrix will be the reachability matrix modified by row and column interchanges. To determine the eventual order of this interchange, a table is created which contains a reachability set, an antecedent set and the product (or intersection) of both sets.

		Objective			Mſ	ımı	oe 1	•											
		1	2	3	4	5	6	7	8	9	`1 0	1	1 2	1	1	1 5	6	7	18
O b j e c t i v e N	1 2 3 4 5 6 7 8 9 10 11 12	1 0 0 0 0 0 0 0 0 0 0 0	0100000000000		111110111110	101010111110	100001000000	101010111110	10101011110	1010101111	101010111110	10101011110	1 0 1 0 1 1 1 1 1 1	10101011110	1 0 1 0 1 1 1 1 1 0	11110111111	000000000000	101010111110	101010111
		_	0	י	ו	י	0,	า	יי	יי	7.	ו	•	ו	ו	Ť	n	ו	ĭ
u	13	0	•	٦ T	1	7	0	٦ -	1	<u>+</u>	J.	٦ ٦	1	1	1	1	0	i	1
m	14	0	0	1	Ţ	Ť	0	Ţ	Ţ	Ţ	Ţ	Ţ	T	T	T	_	_	_	
ъ	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
e	16	0	0	0	0	0	0	0	0	0	0	0	1	0	Q	Ţ	1	0	0
r	17	0	0	1	1	1	0	1	1	1	1	1	1	1	1	1	0	1	1
	18	0	0	1	1	1	0	1	1	1	1	1.	1	1	1	<u> 1</u>	0	1	

Figure 9. The Reachability Matrix Derived From the Matrix of Figure 8.

The reachability set for element 1 is found by inspecting row 1 of the reachability matrix (Figure 9). Every 1 in row 1 corresponds to a column index, and every such column index will be in the reachability set of element 1. To find the antecedent set of element 1, inspect column 1. To every entry of 1 in column 1, there is a corresponding row index; and the set of such row indices is the antecedent set of column 1.

Each row and colum is similarly considered in turn thus producing a table of reachability and antecedent sets for each row of the matrix.

In Figure 9, the row and column indices (1-18) are used to identify the respective elements of the reachability and antecedent sets. Table 1 is constructed from Figure 9 by inspection.

From Table 1, it is immediately apparent that the only rows for which the set product equals the reachability set are rows 6 and 15.

These two rows are therefore removed from the table along with all references to numbers 6 and 15 everywhere else in the table. Thus, rows 6 and 15 from the reachability matrix (Figure 9) become the first two rows of the modified reachability matrix. These two rows will be considered the top level in the instructional hierarchy (or digraph).

Ordinarily, the references to rows 6 and 15 can simply be erased from the table, and the next iteration begun. For the purpose of illustration here, however, each new (reduced) table will be enumerated.

Removal of all 6s and 15s results in the reduced form of Table 2. This time, the reachability set R(s) and set product columns match for rows 4 and 12. As before, these rows are removed from the table and the reachability matrix to become the second level in the modified matrix. Again, removing all references to 4 and 12 from the above table results in the formation of Table 3.

From Table 3, the third level of the modified matrix is shown to be composed of rows 2, 16, 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, and 18. Deleting all these references from Table 3 results in the formation of Table 4.

Table 1. A Reachability Table

<u></u>											
ROW INDEX(S)	REACHABILITY SET R(S)	ANTECEDENT SET A(S)	SET PRODUCT R(S) A(S)								
1	1 3 4 5 6 7 8 9 10 °11 12 13 14 15 17 18	1	1 '								
2	2 4 15	2	2								
3	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
4	4 15	1 2 3 4 5 7 8 9 10 11 13 14	4								
5	3 4 5 7 8 9 10 11 ¹¹	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
6	6	1 6	. 6								
7	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
8	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 ⁷ 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
9	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
10	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
11	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
	12 15	1 3 5 7 8 9 10 11 12 13 14 16 17 18	12								
13	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
14	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
15	15	1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18	15								
16 .	12 15 16	16	16								
17	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
18	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10								
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18								
	<u> </u>										

Table 2. Reduced Table - Level 1 Removed

		- COURT I REMOVED	
ROW INDEX(S)	REACHABILITY SET R(S)	ANTECEDENT SET A(S)	SET PRODUCT R(S) A(S)
1	1 3 4 5 7 8 9 10 11 12 13 14 17 18	1	. 1
2	2 4	ż	2
3	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
4	. 4	1 2 3 4 5 7 8 9 10 11 13 14	4
5	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18
7	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
8	3 4 -5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
9	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14,17 18	11 13 14 17 18
10	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
11	3 4 5 7 8 9 10 11	1 3 5 7°8 9 10	3 5 7 8 9 10
	pl 2 13 14 17 18	11 13 14 17 18	11 13 14 17 18
. 12	12	1 3 5 7 8 9 10 11 12 13 14 16 17 18	12
13	3 4 5 7 8 9 10 11,	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
14	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
16	12 16	. 16	16
17	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
18	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10 °
	12 13 14 17 18	11 13 14 17 18	11 13 14 17 18
		, ,	

Table 3. Reduced Table - Level 2 Removed

	T		
DOUEX (S)	REACHABILITY SET R(S)	ANTECEDENT SET A(S)	SET PRODUCT R(S) A(S)
1	1 3 5 7 8 9 10 11 13 14 17 18	1	1
2	2 .	2	2
3,	3 5 7 8 9 10 11	1' 3 5 7 8 9 10	9 3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18
5	3 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	- 13 14 17 18	11 13 14 17 18	11 13 14 17 18
7	3 5 7 8 9 10 11	1 3 5 7 0 9 10	3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18
•	3 5 7 8 9 10 11 13 14 17 18	1 3 5 7 8 9 10 11 13 14 <u>1</u> 7 18	3 5 7 8 9 10 11 13 14 17 18 7
,	3 4 5 7 8 9 10 11	1 3 5 7 8 9 10	.3 5 7 8 9 10
	12 13 14 15 17 18	11 13 14 17 18	11 13 14 17 18
' 10	3 5 7 8 9 10 11 ·	1 3 5 7 8 9 10 11 13 14 17 18	3 5 7 8 9 10 11 13 14 17 18
.11	3 5 7 8 9 10 11	1 3 5 7 8 9 10	°3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18
13	3 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18
14	3 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18
16	16	16	16
. 17	3 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 -13 14 17 18
18	3 5 7 8 9 10 11	1 3 5 7 8 9 10	3 5 7 8 9 10
	13 14 17 18	11 13 14 17 18	11 13 14 17 18

Note that only row I remains to make up the fourth and final level of the modified matrix. The resulting modified matrix is shown in Figure 10. The heavy black squares clarify various submatrices which denote the four levels identified from the tables. Note that both row and column designations in the modified matrix have been identically interchanged. This is automatically accomplished by the computer algorithm.

. Table 4. Reduced Table - Level 3 Removed

ROW INDEX (S)	REACHABILITY SET R(S)	ANTECEDENT SET A(S)	SET PRODUCT R(S) A(S)
1	1	1	

Objective Number

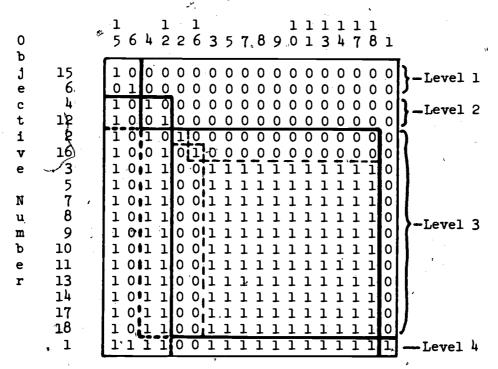


Figure 10. The Modified Reachability Matrix Containing Four Hierarchial Levels

The dashed lines within the level 3 submatrix identify constituents, or interior links, within the level. The largest of the three constituents is called a <u>universal</u> submatrix because it contains all ls indicating that each of the associated objectives in that submatrix are mutually reachable to and from each other. In the literature, this is more commonly known as a maximal cycle. The dashed lines to the left of each of the four heavy-lined submatrices outline what we in the project have termed communication submatrices which essentially describe how one level communicates with the level above it. These submatrices become useful in determining paths in the eventual digraph.

Step 6. At this step, all required information exists in the modified reachability matrix to compute the digraph. Warfield has noted that a given reachability matrix does not produce a unique digraph. This implies that more than one digraph can be constructed from the reachability matrix of Figure 10. All the digraphs constructed in this project are generalized digraphs which are actually composites of all the possible digraphs contained in the reachability matrix.

The construction method is illustrated using Figure 10 for reference. The following illustration represents the process used to manually construct the digraph from the modified matrix. The computer algorithm accomplishes this entire process in a manner which is transparent to the user. The process is presented here for those who wish to develop their own algorithms.

Begin by laying out each of the four levels identified by the heavy-lined submatrices (levels) and starting at the bottom of the matrix. Level 4 contains only row 1. Level 3, the largest level, contains rows 2, 16, 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, and 18. Level 2 contains rows 4 and 12. And Level 1, the highest level, contains rows 15 and 6. By referring to the dashed submatrices (communication submatrices) to the left of each level submatrix, connecting paths between the objectives of one level and the objectives of each higher level on the hierarchy can be determined.

For example, the level 4 communication submatrix (bottom row in Figure 10) has the following pattern: (0 0 1 1 1 1 1 1 1 1 1 1).

This pattern matches the patterns of rows 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, and 18 in the third level. Thus, a connecting path from objective 1 to each of those mentioned above can be drawn on the digraph. Note here that no connecting path exists between objectives 1 and 16 or 1 and 3 because their communication patterns do not match.

On level 3, there are three separate parts (or constituents) within the level. One constituent is composed of objective 2; another is composed of objective 16; and the third is composed of objectives 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, and 18. As stated earlier, this third constituent is called a maximal cycle. Thus, interconnection paths can be drawn on the digraph between objectives 3, 5, 7, 8, 9, 10, 11, 13, 14, 17, and 18.

To get from level 3 to level 2, the level 3 communication submatrix (the dashed matrix to the right of the level 3 submatrix) is analyzed against the level 2 submatrix. Since level 3, as was shown, possesses three separate and unique constituents, there are three unique communication patterns to consider. For instance, the maximal cycle constituent (the largest within level 3) has a communication pattern of (1 1). This pattern matches the ls in both row 12 and row 4 of level 2. Thus, connection paths can be drawn on the digraph from any member of the level 3 constituent to each of objective 12 and 4 in level 2. It is suggested here that only one member from level 3 be connected to level 2 since each member of the maximal cycle is already connected to all others in that constituent (by virtue of it being a maximal cycle set). In addition, a single connecting path allows the resulting digraph to appear considerably more simple.

However, the choice to do, or not to do, this is completely arbitrary. Also in level 3, the row 16 communication pattern (0 1) matches only row 12 in level 2, while row 2's communication pattern matches only row 4. Thus, two more connecting paths can be drawn. Continuing in this manner, a complete digraph can be drawn to represent the reachability matrix. The finished digraph is shown in Figure 11.

We should digress here for a moment to make an important point.

Tatsuoka contends that a digraph can be constructed merely by analyzing the self-interaction matrix (he terms it the adjacency matrix). This writer, however, believes that although Tatsuoka's contention is valid and logically consistent, the adjacency matrix contains only enough information for one unique digraph, whereas, the reachability matrix yields a more generalized digraph. In a manner of speaking, the reachability matrix is a composite of a family of adjacency matrices. This is intuitively true since the reachability matrix is computed by raising the adjacency matrix to consecutive powers.

This can also be shown mathematically. Take, for example, the number 16. There are two numbers who consecutive products will equal 16 - they are, of course 2 (2x2x2x2) and 4 (4x4). Both consecutive products result in the same number - 16. However the original numbers 2 and 4 are obviously not the same. Assume for the moment that 2 and 4 are adjancency matrices. Each will yield a certain digraph with unique interconnecting paths. They may turn out to be identical. But, chances are they will each be slightly different - one containing perhaps more paths than another. However, 16 can be thought of as a reachability matrix since it is a multiple of 2 and 4, and will therefore produce a digraph containing all the paths produced from 2 as well as 4.

LEVEL Level Three 12 27 LEVEL TWO LEVEL ONE

31

32

Thus, the reachability matrix is said to produce a composite or generalized digraph.

A digraph computed from the adjacency matrix will undoubtedly be more simplified than one derived from the reachability matrix, although the level of complexity does not begin to become a hinderance until very large numbers of objectives (40 or more) are to be manipulated. In other words, the digraph derived from the reachability matrix will usually contain more paths than that computed from the adjacency matrix.

Each path on the digraph can be thought of as a legitimate transition from one objective to another within the curriculum. Looking at the digraph in this way, one can begin to see that by developing such a transition-laden digraph yields a more fertile data base from which alternative instructional sequences may be derived. With that, we'll return to the project description.

In the pilot project, it was recognized that the digraph of Figure 11 could be redrawn to yield more meaningful information to the curriculum designer. This alternate digraph is shown in Figure 12. Note in this figure that the maximal cycle constituent of level 3 is represented by a bi-directional circle interlocked via objective 1. From the viewpoint of the acutal course curriculum there is, in fact, a great deal of coherence among objectives 1, 3, 5, 7, 8, 9, 10, 11, 13, 14, 17 and 18. Thus, it is not coincidental that such a pattern has emerged. Note also that objective 6 can only be reached by objective 1. Therefore, any instruction concerning objective 6 must rely on information presented during instruction on objective 1 - if, that is, the students are to see a logical transition from one lesson to the next.

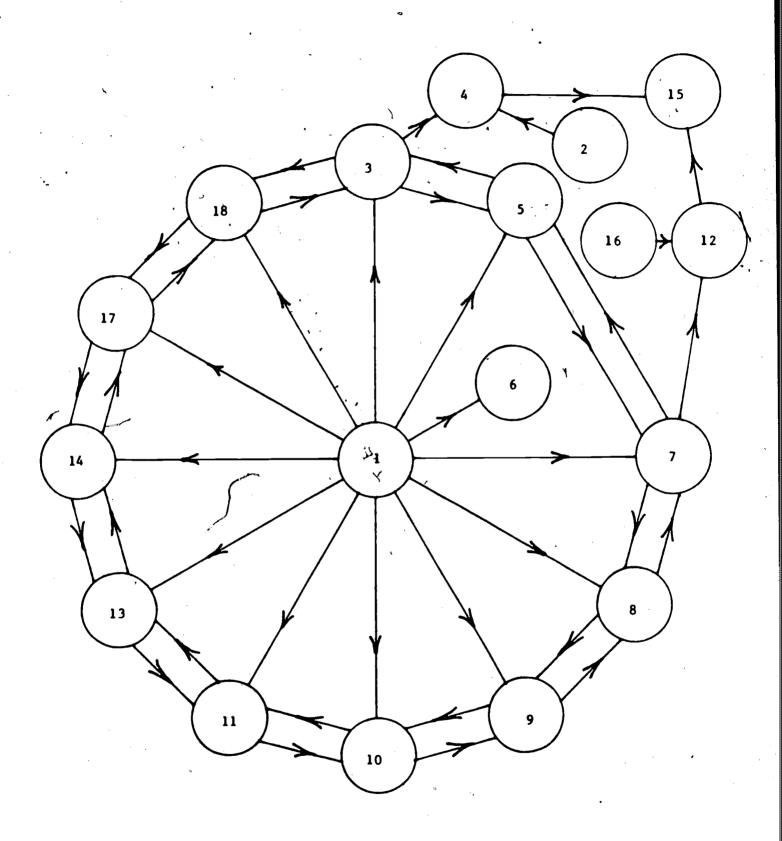


Figure 12. ALTERNATIVE DIGRAPH FOR PILOT CURRICULUM

Since objectives 1 and 6 appear isolated from the rest, instruction relating to these two objectives could very easily form a module of instruction. Indeed, other modules begin to emerge from the digraph upon closer inspection. It will be left to the reader to discover other such modules.

This, in and of itself, is a remarkable tool for the curriculum designer - to be able to identify "natural" groupings of objectives via mathematical analysis. However, this is merely a fringe benefit of the ISM procedure as we have designed it. As the computer analyzes the reachability matrix and its communication patterns, a data base is formed which contains all possible legitimate transitions from any given objective to any other. Once computed, this data base is used for comparison with a user's transition selections. A user can, in fact, experiment with various instructional sequences - transitioning from one objective to another until an entire course is created. By comparing user-selected transitions with the permissible transitions stored in memory, the computer will inform the user if a particular instructional sequence is, or is not, advisable. It will even printout the sequence created by the user in hard copy, if a printer is attached. Figure 13 is an actual, though partial, computer printout of the interactive instructional sequence creation routine.

WITH WHICH OBJECTIVE WOULD YOU LIKE TO START THE SEQUENCE?

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

3 5 7 8 9 10 11 13 14 17 18

? 7

OK. $1 \rightarrow 7$

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

3 5 8 9 10 11 13 14 17 18

? 3

OK. $1 \rightarrow 7 \rightarrow 3$

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

4 5 7 8 9 10 11 12 13 14 17 18 . ? 4

OK. $1 \rightarrow 7 \rightarrow 3 \rightarrow 4$

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

15 ? 2

THIS OBJECTIVE IS OUT OF SEQUENCE. DO YOU STILL WANT TO SELECT IT

(Y OR N)? Y

OK. HOWEVER, IT WILL BE FLAGGED TO REMIND YOU IT'S OUT OF SEQUENCE.

1+7-3-4-2

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

7 4

OK. 1→7→3→4→[2]→4

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO

END THE SEQUENCE:

15 4 8

Pigure 13. An Interactive Instructional Sequence Dialog Between User

THIS OBJECTIVE IS OUT OF SEQUENCE. DO YOU STILL WANT TO SELECT IT
(Y OR N)? Y

OK. HOWEVER IT WILL BE FLAGGED TO REMIND YOU IT'S OUT OF SEQUENCE

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO END THE SEQUENCE:

3 5 7 9 10 11 13 14 17 18 7 18

OK. $1 \rightarrow 7 \rightarrow 3 \rightarrow 4 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 18$

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO END THE SEQUENCE:

3 5 7 8 9 10 11 13 14 17 -7 16

THIS OBJECTIVE IS OUT OF SEQUENCE. DO YOU STILL WANT TO SELECT IT (Y OR N)? Y

OK. HOWEVER IT WILL BE FLAGGED TO REMIND YOU IT'S OUT OF SEQUENCE.

1-7-3-4-2-4-8-18-16

THE FOLLOWING TRANSITIONS ARE ADVISED. CHOOSE ONE OR ENTER ZERO TO END THE SEQUENCE:

12 ? 0

OK. HERE IS THE CURRICULUM SEQUENCE YOU HAVE CREATED:

DO YOU WANT TO CREATE ANOTHER SEQUENCE (Y OR N)? N
OK. BYE FOR NOW.

Figure 13. An Interactive Instructional Sequence Dialog Between User and Computer (Continued)

LIMITATIONS WITHIN A CURRICULAR SYSTEM

Naturally, the ultimate decision as to how a curriculum is to be arranged rests with the managers or administrators of the curriculum. It has been this writer's experience that a major deficiency of frontend analysis is the inadequate attention paid to the interplay among the numerous internal and external constraints and limitations placed upon a given curriculum. Limitations such as facilities, personnel, time, money, social factors, etc., if not anticipated in advance of establishing a curriculum sequence, could result in the ultimate alteration of an otherwise logical instructional sequence.

It is admittedly a complex task to consider the effects of all possible limitations affecting a curriculum without some means to organize and manipulate very large amounts of data. The project described in this paper has illustrated a method with the power to expand and accommodate the analysis of such limitations - and thus produce an ultimate curriculum sequence which is sensitive to those limitations.

The ultimate goal of this project is to develop an integrated curriculum for 16 closely related courses. Each course possesses certain characteristic limitations which are either reinforced or overcome by the remaining courses. It is desired that this project will produce a curriculum which will reconcile the majority of those limitations. Such a goal is common to curriculum designs both in the military and civilian sectors of education. In that respect, at least, those of us associated with this project feel a bond with educators in every sector of society.

33

ABOUT THE AUTHORS

Mr. Thomas R. Renckly, Education Specialist, U. S. Navy Recruiting Command. Coordinator for Curriculum Design at the Navy Recruiting Orientation Unit, Educational Research and Systems Development Department, Orlando, Florida. Currently pursuing a doctorate in Curriculum and Instruction at the University of Florida.

Dr. Gary Orwig, Asst. Professor in Instructional Technology with the College of Education at the University of Central Florida. Teaches courses in computer applications in instructional technology; actively engaged in research concerning interactive video and instructional design.

BIBLIOGRAPHY.

- 1. Hill, Douglas J. and Warfield, John N. "Unified Program Planning,"

 IEEE Transactions on Systems, Man, and Cybernetics, SMC-2,

 No. 5, Nov. 1972, pp. 610-621
- 2. Delp, P., Thesen, A., Motiwalla, J., and Seshardi, N. System Tools

 for Project Planning, International Development Institute,

 University of Indiana, Bloomington, Indiana, 1977, pp. 92-103
- 3. Sato, Takahiro. "Hierarchical Display of Networks of Teaching

 Elements Using the Interpretive Structural Modeling Method"

 IECE Transactions on Educational Technology, 1978-04, pp. 27-30 (manuscript in Japanese)
- Instructional Units Using the Interpretive Structural
 Modeling Method," Educational Technology Research, No. 3,
 1979, pp. 67 75 (In English)
- 5. Bobbitt, Franklin. How To Make A Curriculum, Boston: Houghton
 Publishing Co., 1924
- 6. Nadler, Gerald. Work Design: A Systems Concept, Homewood, Illinois:
- 7. Thomas, C. A., Davies, I.K., Openshaw, D., and Bird, J. <u>Programmed</u>.

 <u>Learning in Perspective: A Guide To Program Writing</u>,

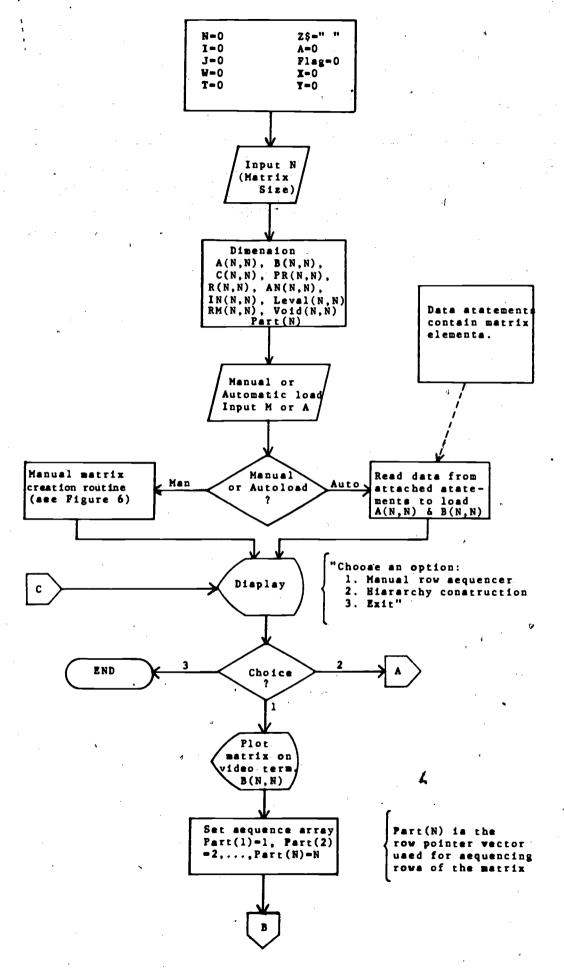
 Chicago: Educational Methods Inc., 1963
- 8. Davies, Ivor K. Competency Based Learning: Technology, Management
 and Design, New York: McGraw-Hill, 1973, pp. 92-102

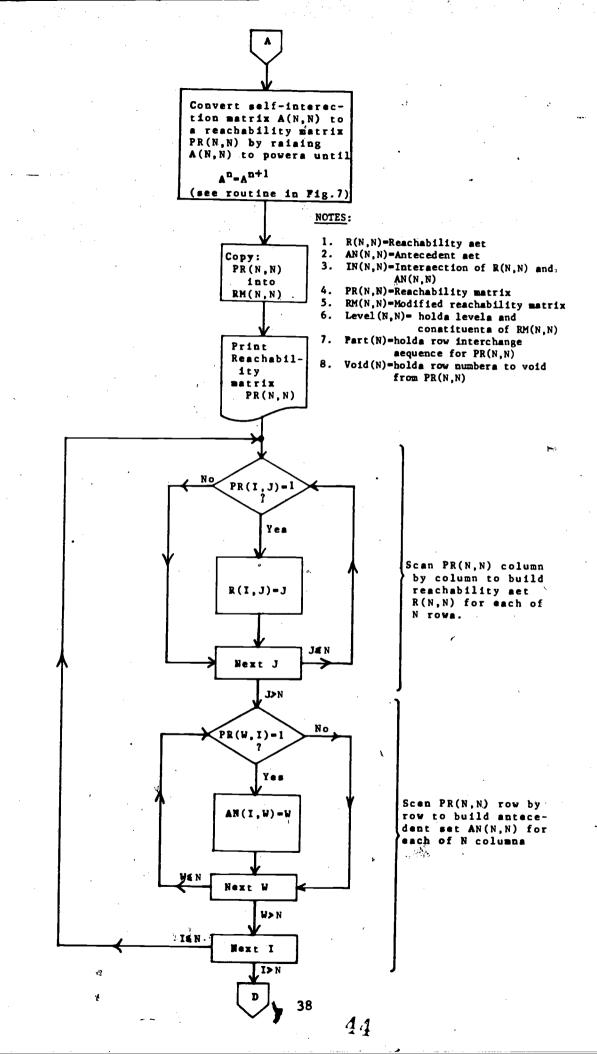
- 9. Esseff, Peter J. and Mary S. Educational Systems For The Future

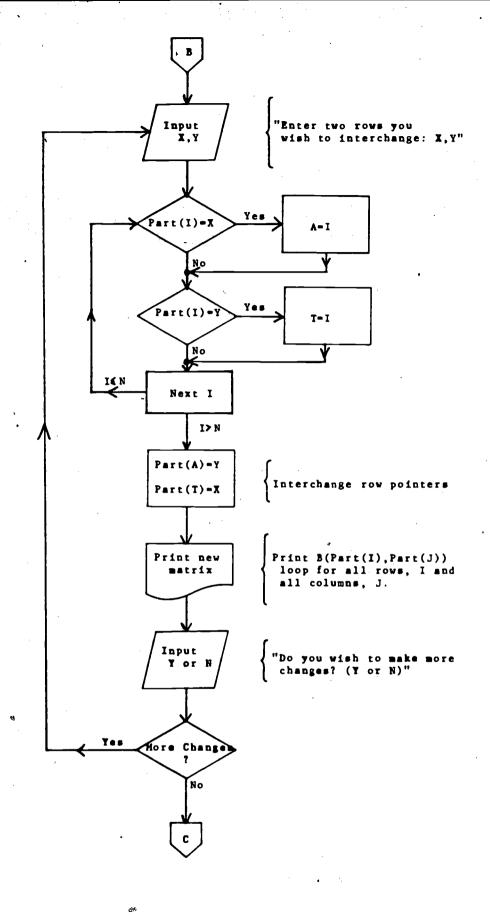
 (Mediated Presentation), 1978, (4th printing)
- 10. Op. Cit., Hill and Warfield, p 613
- 11. Op. Cit., Hill and Warfield, p 613
- 12. Op. Cit., Nadler, p 524
- 13. Op. Cit., Hill and Warfield, p 614
- 14. Warfield, John N. Structuring Complex Systems, Columbus: Battelle
 Institute, Monograph No. 4, April, 1974
- 15. Warfield, John N. personal communication, February, 1981
- 16. Op. Cit., Warfield, Chapter 2, p 9
- 17. Warfield, John N. Societal Systems: Planning, Policy and
 Complexity, New York: John Wiley & Sons, 1976, pp. 276-284
- 18. Op. Cit., Warfield, Structuring Complex Systems, Chapter 4, pp. 1-8; Chapter 5, pp. 1-9
- 19. Tatsuoka, Maurice M. "Recent Psychometric Developments in Japan:

 Engineers Grapple with Educational Measurement Problems,"

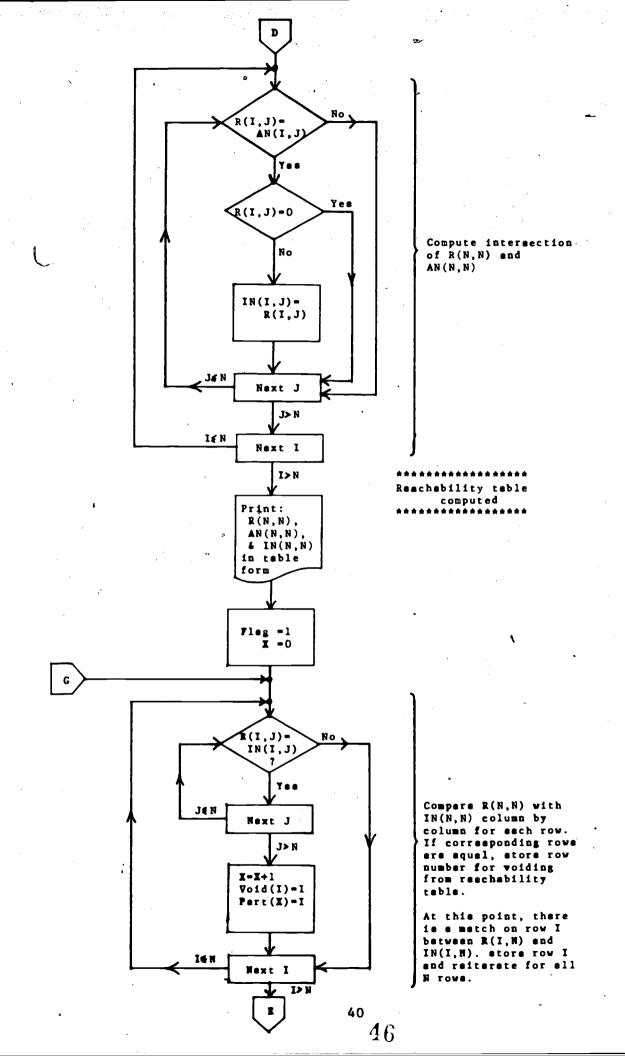
 presented at ONR Contractor's Meeting on Individualized

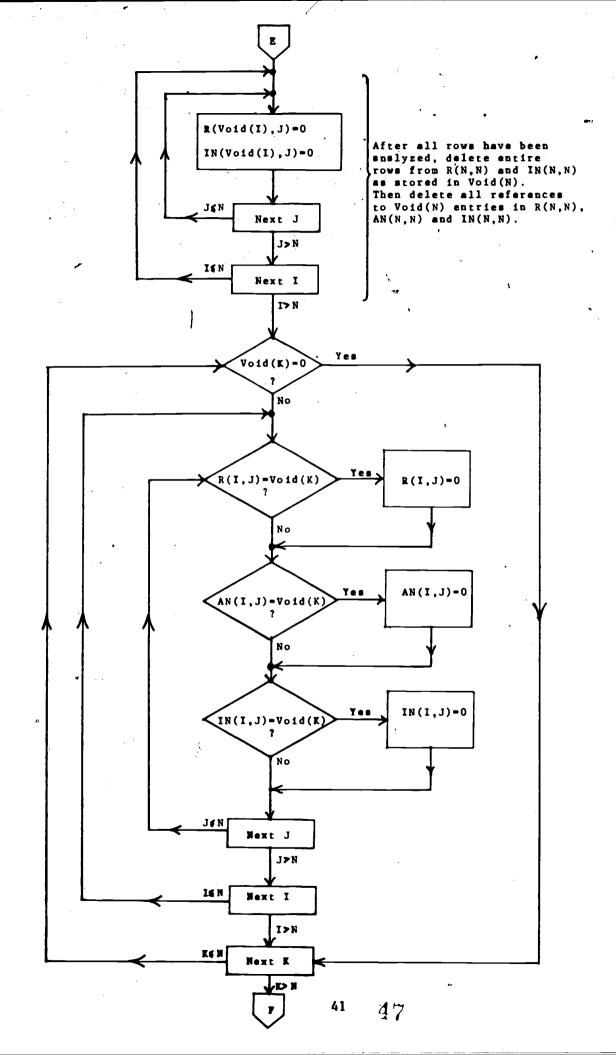

 Measurement, Columbia, Missouri, September 19, 1978, p. 6
- 20. Op. Cit., Warfield, Structuring Complex Systems, Chapter 2, p. 9
- 21. Tatsuoka, Maurice M. personal communications, June 1981; (reply)

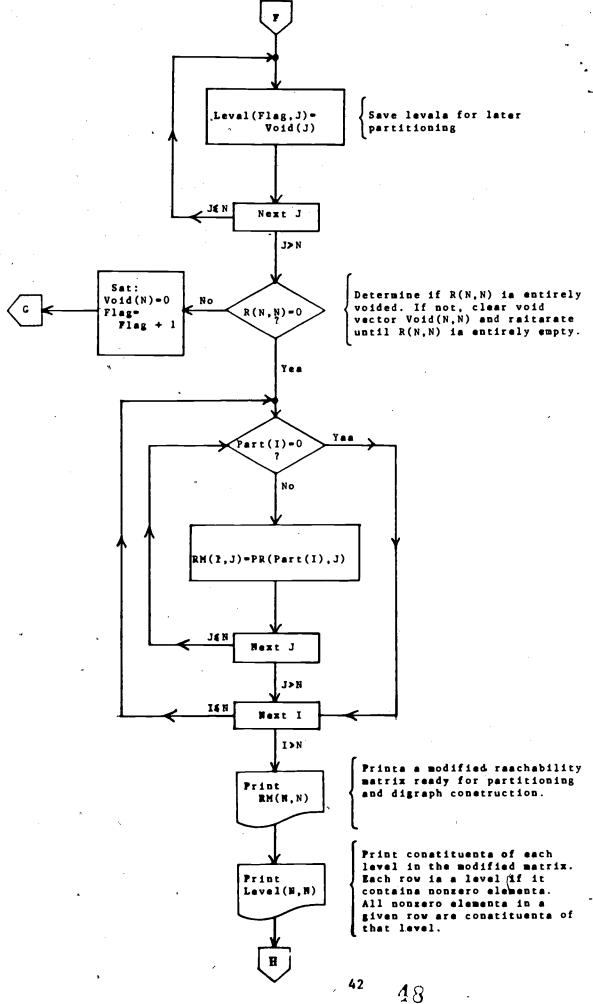

 July 1981

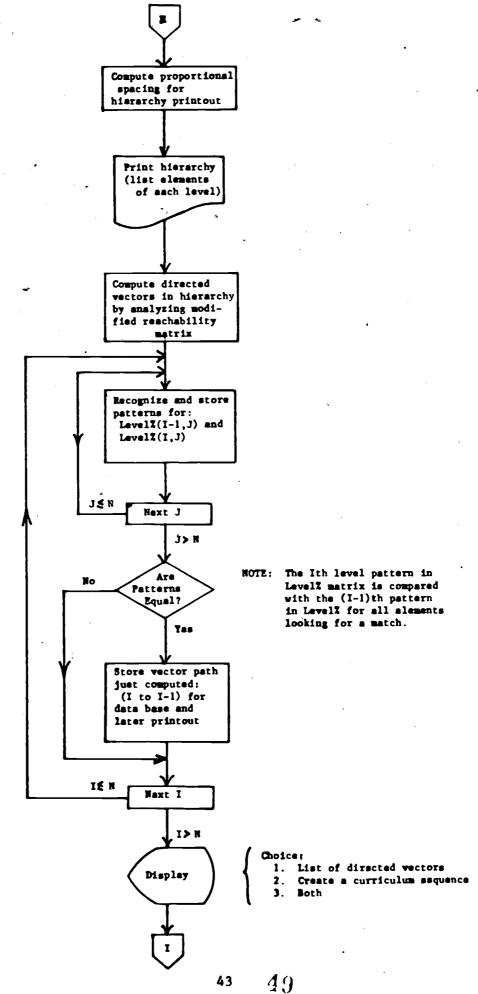


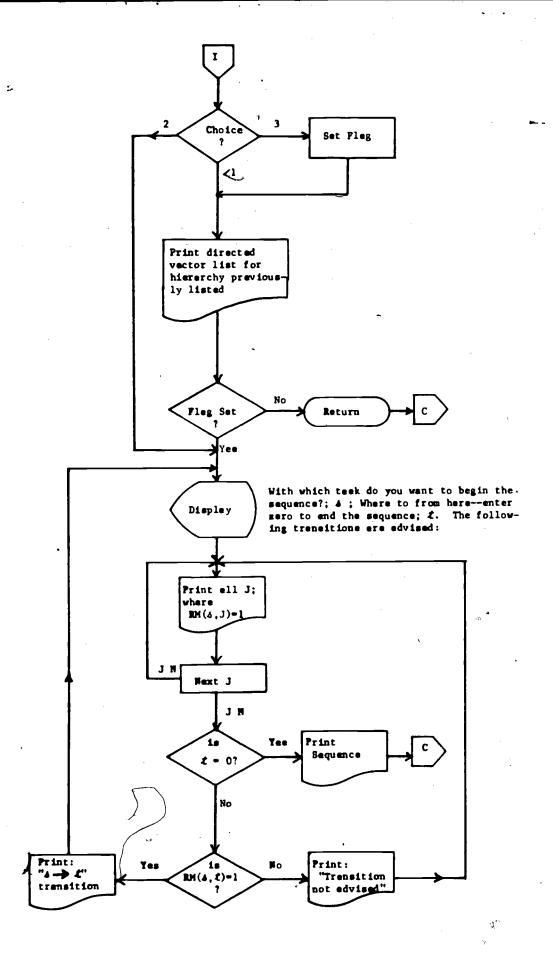
APPENDIX A


A Detailed Computer Flowchart for Developing
A Sequence Digraph From a Set of
Curriculum Objectives









APPENDIX B

An APPLESOFT BASIC Program Listing
Based Upon the Flowchart of APPENDIX A

NOTE: The program is divided into four (4) parts and filed onto disc by their appropriate names:

- 1. * Router Routine
- 2. Matrix Maker
- 3. Chase I
- 4. Chase II

Each program, segment calls the next from the disc.

© by APPLE Computer Inc., 1978.

```
3 REM BREETING/ROUTER ROUTINE
 10 HOME
 15 Ds - CHR$ (4)
     VTAB B: HTAB 15
 20
    INVERSE : PRINT "CHASE": NORMAL
 20
     PRINT : PRINT "
                         CURRICULUM"
     PRINT "
                 HIERARCHY"
 50
     PRINT "
                    AND"
 60
     PRINT "
                     SEQUENCING"
 70
     PRINT "
                      EXPERIMENT"
 80
90 VIAB 19: PRINT "(C) COPYRIGHT 1981 BY TOM RENCKLY 100 HTAB 26: PRINT "& GARY ORWIG"
      FOR PAUSE - 1 TO 5000: NEXT PAUSE
 120
      HOME
 125
      VTAH 12: HTAH 15
 126
      PRINT : PRINT DS; "RUN MATRIX MAKER "
 130
 140
      END
```

```
1000
      REM MATRIX MAKER
1010
      HOME
1020
      PRINT : PRINT : PRINT
1030
      PRINT "SELECT ONE:"
      PRINT : PRINT PRINT : 1.
1040
1050
                 1. SET AND RUN DATA SET ON DISC"
1060
      PRINT
      PRINT "
                 2. START NEW DATA SET"
1070
1080
      PRINT
      PRINT "
1090
                 3. REVIEW / CHANGE DATA BET ON DIBC"
1100
      PRINT
      PRINT "
1110
                  4. QUIT"
1120
      BET BAS
1130 SA = VAL (SAS)
1135
     IF BAS - "D" SOTO 2010
1140
      IF BA < 1 OR BA > 4 THEN 1120
1150
      ON BA BOTO 2000,3000,4000,11000
1140
      REM
1170
      REH
2000
      REM SET AND RUN DATA SET FROM DISC
2010
      PRINT
     PRINT CHRS (4); "RUN CHASE 1"
2020
```

```
3000
     REM START NEW DATA BET
3010
      RUN 3020
      HOME : PRINT "HOW MANY OBJECTIVES ARE IN THIS UNIT";
3020
       INFUT N
3030
      DIM THE (N), A% (N, N)
3040
3050
      FOR I - 1 TO N
୪୦୦୪
      HOME
       PRINT "WHAT IS THE NAME OF OBJECTIVE ":1:"?"
3070
      PRINT : PRINT "ENTER A 25 CHARACTER OR LESS DESCRIPTION" VTAB B: HTAB 26; PRINT """
3080
3090
                                         25 CHARS"
      PRINT "
3100
3110
       VTAB 7
      INPUT SAS
3120
3130 SAS = LEFTS (SAS, 25)
     VTAR 7
3140
3150 PRINT " 1
3160 VTAB 7: PRINT " "; SAS
3170 - FOR L = 1 TO 500: NEXT L
3180 TNS(1) - BAS
3190
      NEXT I
3200
      REM CREATE MATRIX
      HOME
3210
       FOR 1 = 1 TO N
3220
      FOR J = 1 TO N
2220
3240
       IF 1 = J THEN 3360
3250
      HOME
3260
      VTAH 6
      PRINT "15 MASTERY OF DEJECTIVE NO. ";1
3270
3280 / PRINT : PRINT TN4(1)
3290 PRINT : PRINT "NECESSARY FOR ACCOMPLISHMENT OF ": PRINT "OBJECTIVE N
         ", 5
3300 PRINT : PRINT TN#(J);"?"
3320
       GET SAS
      IF SAS = "Y" THEN 3360
IF SAS = "N" THEN 3380
                                                    1
3330
3340
3350
      BOTO 3320
3360 \text{ A}(1,J) = 1
3370 GOTO 3390
3380 A%(I,J) = 0
3390 NEXT J.
3400
      NEXT I
      REM DIBPLAY NAMES AND MATRIX
3410
3420
       HOME .
       FOR 1 = 1 TO N: PRINT I; ". ", TNG (1): NEXT I
3430
       PRINT : PRINT
3440
      FOR B = 1 TO 2
PRINT " "11 REW 4 SPACES
3450
3453
       FOR 1 - 1 TO N
3456
       IF B = 1 AND 1 < 10 THEN PRINT " "1: 80TO 3471
3459
       IF B = 1 AND I > 9 THEN PRINT INT (I / 10); 6 GOT,0 3471
IF B = 2 AND I < 10 THEN PRINT I; 6 GOTO 3471
IF B = 2 AND I > 9 THEN PRINT (I - ( INT (I / 10) 8 10));
3462
3465
346B
3471
       NEXT 1
3474
       PRINT
3477
       NEXT B
3480
       PRINT
3483
       FOR 1 - 1 TO N
       PRINT 1;".";
FOR J = 1 TO N
PRINT TAB( 5);AX(1,J);
3486
3487
3472
3495
       NEXT J
3478
       PRINT
3501
       NEXT I
       PRINT . PRINT "PRESS RETURN TO CONTINUE"
3520
3530
       INPUT BAS
       HOME & VTAB &: PRINT "BELECT ONE OF THE FOLLOWING:"
3540
```

```
PRINT : PRINT : PRINT
  3550
         PRINT "
                    1. BAVE THE MATRIX ONTO DIBK"
  3570
         PRINT
  3580
         PRINT "
                    2. MAKE CHANGES
  3590
         PRINT
         PRINT "
  3600
                     3. DIBCARD MATRIX AND RETURN"
  3610
         PRINT "
                       TO MAIN MENU
  3620
         PRINT
  3630
         GET BAS
         IF VAL (844) < 1 DR VAL (844) > 3 THEN 3630
  3640
         ON VAL (8A4) GOTO 3680,3660,3860
  3650
         REM BAVE BEFORE CHANGING
  3660
  3670 FL = 1: REM FLAG FOR CHANGE MATRIX
  368Ú
         PRINT : PRINT "CATALOG"
         IF FL = 1 THEN PRINT : PRINT "JUST TO BE BAFE WE WILL SAVE THE MATH
       IX"
  3700
         PRINT : PRINT "WHAT WOULD YOU LIKE TO NAME THIS MATRIX?"
         INPUT UT
  3710
         PRINT "DPEN ";UTO
PRINT "DELETE ";UTO
  3720
  3730
         PRINT "OPEN ":UTS
  3740
         PRINT "WRITE":UTS
  3750
  3760
         PRINT N
  3770
         FOR I = 1 TO N: PRINT TN6(\dot{I}): NEXT I
  3780
         FOR I = 1 TO N
  3790
         FOR J = 1 TO N
         PRINT AZ(I; J)
  2900
  3810
         NEXT J
  3820
         NEXT I
  3834 PRINT "CLOSE ";UTO 3840 PRINT : PRINT : PRINT : PRINT : PRINT : PRINT : MATRIX ";UTO;" MAG BEEN BAVED."
  3840
         IF FL = 1 THEN 4500
         RUN : REM RESTART TO ALLOW REDIMENSION
  3860
  4000
         REM REVIEW/CHANGE DATA FROM DISK
         RUN 4020: REM RESTART TO RESET DIM STATEMENTS - GET DATA MILE
  4010
  4020
         PRINT
  4030
         PRINT "CATALOG"
         PRINT : PRINT "WHAT IS THE NAME OF THE DATA SET"
  4040
  4050
         INPUT UTS
         IF LEN (UTS) - 0 THEN 4050
  4055
         PRINT "OPEN "; UTS
  4060
         PRINT "READ ": UT .
  4070
         INPUT N .
  4080
  409U
         DIM THO (N) , A% (N, N)
  4100
         FOR I = 1 TO N: IMPUT TNG(I): NEXT I
  4110
        FOR I = A TO N
  4120
         FOR J = 1 TO N
  41301 INPUT AX(1,J)
  4140
        NEXT J
  4150
        NEXT I
        PRINT "CLOSE ";UTO
  4160
        REM READY TO REVIEW/CHANGE
  4170
  4500
        REM REVIEW / CHANGE DATA
  4510 FL - 0
 4520
       HOME
4530
        VTAR 6
  4540
        PRINT "BELECT ONE OF THE FOLLOWING:"
                            1. REVIEW/CHANGE A DESCRIPTOR
        PRINT : PRINT "
  4550
        PRINT : PRINT "
                             2. REVIEW/CHANGE MATRIX"
        PRINT : PRINT" "
  4570
                             3. ADD TASK(S)
  4500
       PRINT & PRINT "
                             4. DELETE TABL (B) "
                                ": INVERSE : FLASH : PRINT "SAVE": : NORMAL : PRINT
        PRINT . PRINT "
                            5.
  4590
        " FILE AFTER CHANGES"
                            4. RETURN TO MAIN MENU"
  4600
         PRINT & PRINT "
  4610
         PRINT
  4620
        BET BAS
```

```
IF# VAL. (SAS) -< 1 DR VAL (SAS) > 6 THEN 4620
4630
      DN VAL (SA$) GDTD 5000,6000,7000,8000,9000,10000
4640
      REM REVIEW/CHANGE A DESCRIPTOR
5000
5010
      HOME : VTAB 6
      FOR I = 1 TO N: PRINT I;". ";TN6(I): NEXT I
5020
5030
      PRINT
5040
      PRINT "MAKE A CHANGE (Y/N)?".
      GET SAS
5050
      IF SAS = "N" THEN 4500
5060
      IF SAS - "Y" THEN 5090
5070
      GOTO 5050
5080
      PRINT "WHAT IS THE NUMBER OF THE DESCRIPTOR ": PRINT "TO BE CHANGED"
5090
      INFUT SA
5100
      PRINT : PRINT THE (SA)
PRINT : PRINT "TO BE CHANGED TO:
5110
5120
      PRINT : INFUT SAS
5130
     SAS - LEFTS (SAS, 25)
5140
      PRINT BAS
5150
      FOR I = 1 TO 500: NEXT I
5160
5165 TN$ (SA) = SA$
      PRINT "DONE": FOR I = 1 TO 500: NEXT I
5170
      GOTO, 4500
      REM REVIEW/CHANGE THE MATRIX
6000
6002
      FOR B = 1 TO 2
      PRINT "
6003
                   ": REM 4 SPACES
6004
      FOR I = 1 TO N
6005 IF B = 1 AND I < 10 THEN PRINT " ";: GOTO 6014
6006 IF B = 1 AND I > 9 THEN PRINT INT (I / 10);: GOTO 6014
6007 IF B = 2 AND I < 10 THEN PRINT I;: GOTO 6014
      _{0} IF B = 2 AND 1 > 9 THEN PRINT (I - ( INT (I / 10) $ 10));
6008
      NEXT I
6014
      PRINT
6015
6016
      NEXT &
      PRINT
6017
      FOR 1 = 1 TO N
PRINT I; "."
6020
6025
      FOR J = 1 TO N
6030
       PRINT TAB( 5); A%(I, J);
6040
6050
       NEXT J
0606
       PRINT
6070
      NEXT I
      PRINT :: PRINT "'1' STANDS FOR YES, '0' STANDS FOR NO"
6080
      PRINT "DO YOU WANT TO EXAMINE TWO DESCRIPTORS": PRINT "IN DETAIL (YA
6090
      N) " :
6100
       GET SAS
       IF SAS - "N" THEN 4500
6110
       IF 846 - "Y" THEN 6140
6120
6130
       BOTO 6100
      PRINT : PRINT : PRINT "ENTER THE NUMBERS OF THE TWO DESCRIPTORS": PRINT
      "LIKE THIS: 5,7 AND PRESS RETURN"
6150
       INPUT $1,52
       HOME
6160
                                          1.": PRINT
       VTAB 6: PRINT "
6170
       PRINT "IS "; TNS (S1); " REQUIRED"
6180
       PRINT "BEFORE "; TNG (S2)
6190
       IF A%($1,82) = 1 THEN 6220
6200
       PRINT : PRINT "NO": BOTO 6230
6210.
       PRINT : PRINT "YES"
6220
       PRINT : PRINT : PRINT "
                                                   2. " PRINT
4230
       PRINT "IS ", TNS (82); " REQUIRED"
6240
6250
       PRINT "BEFORE "; TNS (S1)"
       IF AX(82,81) - 1 THEN 4280
6260
       PRINT : PRINT "NO": BOTO 6290
PRINT : PRINT "YES"
6270
6286
       PRINT : PRINT "DO YOU MANT TO CHANGE EITHER OF THEBER"
6290
```

48

```
GET : 504
1F SAS = "N" THEN 4500
 6300
4310
       IF SAS = "Y" THEN 6340
 6320
 6330
       GOTO 6300
       PRINT : PRINT "ENTER 1 OR 2"
 6340
 6350
       GET SA
       IF SA < 1 OR SA > 2 THEN 6350
 6360
 6370 IF SA = 2 THEN 6410
 6380 IF A%($1,52) = 0 THEN 6400
 6390 A%($1,$2) = 0: GOTO 6160
 6400 A%(S1,S2) = 1; GOTO 6160
 6410 IF A%(S2,S1) = 0 THEN 6430
 6420 A%($2,$1) = 0: GOTO 6160
 6430 A%(S2,S1) = 1: GOTO 6160
 7000 REM ADD TASKS
 7005
 7010
       FOR I = 1 TO N: PRINT TNS(I): NEXT I
 7012
 7013
       PRINT " DO YOU WANT TO ADD": PRINT "OBJECTIVES (Y/N)?
 7014
       GET SAS
      'IF SAS = "N" THEN 4500
 7015
       JF SAS = "Y" THEN 7018
 7016
 7017
       GOTO 7014
 7018 PRINT : PRINT "ADD HOW MANY TASKS";: INPUT SA
 7020 N = N + SA
 7025 PRINT : PRINT : PRINT "PLEASE WAIT WHILE I RESET MY DIMENSIONS"
       PRINT "OPEN SETUP"
7035 PRINT "DELETE SETUP"

7040 PRINT "OPEN SETUP"

7045 PRINT "WRITE SETUP"
 7050
       PRINT N
 7055
       PRINT UTS
       PRINT "CLOSE SETUF"
 7060
 7065
       RUN 7070
 7070
       HOME '
 7075
       PRINT
 7080
       PRINT "OPEN SETUP"
       PRINT "READ SETUP"
 7085
 7090
       INFUT N
 7095
       DIM TNS (N) , A% (N, N).
 7100
       INFUT UTS
       PRINT "CLOSE SETUP"
7105
       PRINT "OPEN "; UTS
 7110
       PRINT "READ ": UTS
7115
7120
       INPUT NI
7125
       FOR I = 1 TO N1: INFUT THE (I): NEXT I
7130
       FOR 1 = 1 TO N1
 7135
       FOR J = 1 TO N1
       INPUT A%(I,J)
7140
7145
       NEXT J
7150
       NEXT. I
7155
       PRINT "CLOSE ": UTS
7160
       FOR I = 1 TO N
7165 PRINT I;" ."; TN$(I)
7170
       NEXT I
       PRINT : PRINT : PRINT "LET'S WORK WITH ONE TASK AT A TIME."
7175
7180
       PRINT "YOU MAY ADD A TASK AFTER ANY OF THE"
      PRINT "CURRENT TITLES."
7185
                                I WILL LOWER THE REST."
7190
       PRINT
7210
       PRINT : PRINT "AFTER WHICH CURRENTLY USED NUMBER";
7215
       INPUT BA
7220
       IF SA < 0 OR SA > N1 THEN 9010 7215
7225 N1 = N1 0+ 1
7230 PRINT : PRINT "WHAT IS THE TITLE OF THE NEW TASK"
7235
      INPUT BAS
7240 BAS - LEFTS (BAS, 25)
```

```
FOR 1 = N TO SA + 2 STEP - 1
 7245
 7250 \text{ TNS}(I) = \text{TNS}(I - 1)
       NEXT I
 7260 \text{ SA} = \text{SA} + 1
 7265 TN$ (SA) = SA$ -
       FOR I = N1 TO 1 STEP - 1
FOR J = N1 TO SA + 1 STEP
 7270
 7275
 7280 A%(1,J) = A%(1,J-1)
 7285
       NEXT J
 7290
       NEXT I
       FOR J = N1 TO 1 STEP - 1
 7295
 7300
       FOR I = NI TO SA + 1 STEP
 7305 A\%(1,J) = A\%(1-1,J)
7310
       NEXT I
7315
       NEXT J
7320
      FOR 1 = 1 TO N1
7325 \ A\%(1,SA) = 0
7330 NEXT 1
7335
       FOR J = 1 TO N1
7340 A%(SA, J) = 0
7345
       NEXT J
7350
       REM FILL IN MATRIX
7355
7355
       HOME
7365
       FOR 1 = 1 TO N1
7370
       IF I = SA GOTO 7500
7375
       HOME
       VTAR 6
7380
7385
       PRINT "IS MASTERY OF OBJECTIVE NO. " "; I
7390
       PRINT : PRINT TN$(1)
7395
       PRINT "NECESSARY FOR ACCOMPLISHMENT OF"
       PRINT "OBJECTIVE NO. "; SA
7397
7400 PRINT : PRINT TNS (SA) : "?"
      BET SAS
7410
7415
       IF SAS = "Y" THEN 7430
      IF SAS = "N" THEN 7440
7420
7425
      GOTO 7410
7430 \ A\%(1,8A) = 1
7435 GOTO 7445
7440 \ A\%(1,SA) = 0
7445
      HOME
7450
      VTAB 6
7455
      PRINT "IS MASTERY OF OBJECTIVE NO. "; SA
      PRINT : PRINT TNS (SA)
PRINT "NECESSARY FOR ACCOMPLISHMENT OF"
7460
7465
      PRINT "OBJECTIVE NO. "; I
7467
7470
      PRINT : PRINT TNS(1);"?"
7480
      GET SAS
      IF SAS = "Y" THEN 7500
7485
7490
      IF 844 = "N" THEN 7510
7495
      GOTO 7480
7500 A%(SA,I) = 1
7505 GOTO 7515
7510 A%(SA, I) = 0
      NEXT 1
7515
7517
      IF N1 - N THEN 4500
7520
      HOME
7525
      GOTO 7160
0000
      REM DELETE TASKS AND MATRIX SECTIONS
6010
      HOME
0020
      VTAB 6
030
      FOR I = 1 TO N: PRINT I;". ";TN$(1): NEXT I
B040
      PRINT "LET'S WORK WITH ONE OBJECTIVE AT A TIME"
      PRINT "BHOULD I DELETE AN OBJECTIVE (Y/N)?";
₿い≾0
8060
      BET BAS
      IF 846 - "N" THEN 4500
B0B∪
```

```
8090
       IF SAS = "Y" THEN BITO
      SDTD 8060
 8100
 8110
       PRINT
 8120
       PRINT "WHICH NUMBER":
 8130
       INPUT SA
8135
       IF SA = N THEN 8280
      IF SA < 1 OR SA > N THEN 8130
8140
8150
       FOR I = SA TO N - 1
B160 TNS(I) = TNS(I + 1)
8170
      NEXT I
      FOR I = 1 TO N
8180
      FOR J = SA TO N - 1
8190
8200 \text{ A}\%(1,\text{J}) = \text{A}\%(1,\text{J} + 1)
8210 NEXT J
8220
      NEXT I
8230
       FOR J = 1 TO N
      FOR I = SA TO N - 1
8250 \ A\%(I,J) = A\%(I + 1,J)
8260
      NEXT I
8270 NEXT J
8280 N = N - 1
8290 GOTO 8000
9000
      REM SAVE CHANGES
9010
      HOME
9020
      PRINT : PRINT "CATALOG"
9030
      PRINT : PRINT "THE CURRENT NAME IS ": UTS; ". "
9040
      PRINT "DO YOU WANT TO SAVE THE CHANGES"
      PRINT "UNDER THIS NAME (Y/N)?";
9050
9060
      GET SAS
      IF BAS = "Y" THEN 9200
9070
       IF SAS = "N" THEN 9100
9080
9090
      GDTD 9060
      PRINT : PRINT "WHAT IS THE NEW FILE NAME";
9100
9110
      INPUT UTS
9200
      PRINT
      PRINT "DPEN"; UTS
9210
      PRINT "DELETE": UTS
9220
      PRINT "OPEN"; UTS
9230
9240
      PRINT "WRITE"; UTS
9250
      PRINT N
9260
      FOR I = 1 TO N: PRINT TNS(I): NEXT I
      FOR I = 1 TO N
FOR J = 1 TO N
9270
9280
9290
      PRINT A%(1, J)
9300
      NEXT J
9310
      NEXT I
      PRINT "CLOSE"; UT$
7320
9330 PRINT : PRINT : PRINT "MATRIX "; UTS; " HAS BEEN SAVED."
9340
      FOR I = 1 TO 750: NEXT I
10000
      REM RETURN TO MAIN MENU
10010
       RUN
11000
       REM END
       PRINT "BYE FOR NOW!"
11010
11020
       END
```



```
10 REM CHASE 1 MODULE
20 REM
30 REM
40 N = 0
50 I = 0
60 J = 0
70 W = 0
90 T = 0
90 Zs = " "
100 Ds = CHRs (4)
110 E = 0
120 FLAG = 0
130 FULL = 0
140 CDUNT = 0
150 HOME
160 PRINT "DD YOU HAVE A PRINTER ATTACHED: ANSWER"
180 INFUT Zs
```

```
IF IS = "Y" THEN FLAG = 1
 190
 200
      PRINT : PRINT DS: "CATALOG "
      PRINT
 210
      PRINT "TYPE IN THE NAME OF THE DATA FILE, THEN"
 220
      PRINT "PRESS RETURN";
 230
 240
      INPUT UTS
 250
      PRINT "THE FILE IS ";UT$
      PRINT : PRINT DS: "OPEN "; UTS
 260
      PRINT : PRINT DS; "READ "; UTS
 270
 200
      INPUT N
 290
      DIM A% (N, N), C% (N, N)
 300
      DIM PR% (N, N), LEVEL% (N, N)
 310
      DIM R% (N, N), AN% (N, N)
      DIM IN% (N, N), RM% (N, N)
 320
      DIM VOID%(N), HOLD%(N), PART%(N)
 330
 340
      DIM TNS (N)
 350
      FOR I = 1 TO N
      INPUT TNS(1)
4 370
      NEXT I
 380
      FOR I = 1 TO N
 390
      FOR J = 1 TO N
 400
      INFUT A%(I,J)
 410 PRX(I,J) = AX(I,J)
 420 C%(I,J) = A%(I,J)
 430
     NEXT J
      NEXT I
 440
 450
      PRINT : PRINT Ds: "CLOSE ": UTS
      IF FLAG = 1 THEN PR# 1
 460
 470
      VTAB 5: PRINT "BELECT ONE OF THE FOLLOWING": PRINT "THEN PRESS RETURN
 ARO
 490
      PRINT & PRINT
      PRINT "1. CREATE INSTRUCTIONAL SEQUENCE"
 510
      PRINT : PRINT "2. INSTRUCTIONAL HIERARCHY AND SEQUENCE"
      PRINT "3. TECHNICAL RUN - FULL OPERATIONAL": PRINT "
 520
      GET OPT
 530
 540 K = 1
 550
      HOME
      IF OFT = 3 GOTO 630
 560
      IF DPT < 1 OR OPT > 3 GOTO 530
 565
 570
      VTAB 12: PRINT "IT WILL TAKE APPROXIMATELY ": ( INT ((N * N - N * 3)
      1.5)) / 60
 580
      PRINT "MINUTES TO COMPUTE YOUR HIERARCHY.
      PRINT "WILL BE NOTIFIED BY THE COMPUTER WHEN"
 590
      PRINT "THE HIERARCHY IS COMPLETED. THANK YOU"
      PRINT "FOR WAITING."
 610
 620
      GOTO 760
      PRINT : PRINT "AT THIS TIME, THE ORIGINAL MATRIX IS"
 630
 640
      PRINT "BEING RAISED TO CONSECUTIVE POWERS."
 650
      PRINT "EACH ITERATION COMPARES THE CURRENT"
      PRINT "POWER TO THE PREVIOUS ONE - BEEKING"
 660
      PRINT "A MATCH.": PRINT : PRINT
 670
 680
      GOTO 760
 690
      REM TRANSFER PR% TO C% AND REITERATE.
      FOR 1 = 1 TO N
 700
 710
      FOR J = 1 TO N
 720 C%(1,J) - PR%(1,J)
 730 PR%(1,J) = 0
 740 NEXT J
 750
      NEXT I
 760 T = 0
      IF OPT < > 3 BOTO 800
 770
      PRINT "ITERATION NUMBER ";K;". THE MATRIX IS"
 780
      PRINT "CURRENTLY BEING RAISED TO THE "$ (K + 1); " POWER. ": PRINT
      FOR W = 1 TO N
 200
      FOR I = 1 TO N
 $10
```

```
820 FOR J = 1 TO N
 830 PR%(I,W) = A%(I,J) & C%(J,W)
 840 IF PR%(I,W) > = 1 GOTO 860
 850
      NEXT J
 860
      IF (C\%(I,W) < \rightarrow PR\%(I,W)) THEN T = T + 1
 870
      NEXT I
 880
      NEXT W
 890 H = K + 1
 900 IF DPT < > 3 GDTD 930
      PRINT "THE POWER ": K; " IS BEING COMPARED WITH"
 910
      PRINT "THE "; (K - 1); " POWER MATRIX": PRINT : PRINT
 720
      IF T > 0 GOTO 700
 930
      IF OPT < > 3 GOTO 1060
 935
 940
      REM MATRIX PRINTOUT
      IF FLAG = 1 THEN PRW 1:ZS = CHRS (12): PRINT ZS
 960 PRINT "REACHABILITY MATRIX OF ORDER "4K
 970
      PRINT : PRINT
 980
     FOR I = 1 TO N
 990 FOR J = 1 TO N
 1000 PRINT PR%(I,J);" ";
 1010
      NEXT J
 1020
       PRINT
 1030
      NEXT I
 1040 PRINT
 1050 PRINT " THIS MATRIX IS NOW BEING COMPUTED INTO A DIGRAPH"
 1060 S - 0
 1070 C = 0
 1080 PRINT
 1090 FOR I = 1 TO N
 1100
       FOR J = 1 TO N
      IF PR%(I,J) = 1 THEN R%(I,J) = J
 1110
1120
       NEXT J
 1130
      NEXT I
 1140
       FOR W = 1 TO N
 1150
      FOR I = 1 TO N
 1160
      IF PR%(I,W) = 1 THEN AN%(W,I) = I
 1170
      NEXT I
 1180
      NEXT W
 1190
      FOR I = 1 TO N
 1200
      FOR J = 1. TO N
 1210
      IF R^{\chi}(I,J) = AN^{\chi}(I,J) AND R^{\chi}(I,J) < > 0 THEN IN^{\chi}(I,J) = R^{\chi}(I,J)
 1220
      NEXT J
 1230 NEXT I
 1240 W = 0
 1250 FOR I = 1 TO N
      FOR J = 1 TO N
 1260
 1270
      IF R%(I,J) < > IN%(I,J) THEN J = N:Z6 = "ADVANCE": BOTO 1310
      FOR T = 1 TO N
 1280
      IF PART%(T) = I THEN T = N:J = N:Z6 = "ADVANCE": REM ROW @ ALREADY
 1290
      EXISTS IN PARTX
 1300
      NEXT T
 1310
      NEXT J
      IF ZS = "ADVANCE" BOTO 1370
 1320
 1330 B = 8 + 1
 1350 PARTX(8) = 1: REM PARTITION SEQUENCE VECTOR
 1360 VDID%(W) = I: REM
                         VOID VECTOR
 1370 Z# - "
 1380 NEXT 1
 1390 FOR 1 - C TO 6
 1400 T = 0
 1410 FOR J = 1 TO N
 1420 IF PRX(PARTX(I), J) = 1 THEN T = T + 1
 1430 NEXT J
 1440 HOLDX(I) - T
 1450 NEXT I
```

```
1460 FOR J = 1 TO S
 1470 D = 0
 1480 FDR I = S TD (C + 2) STEP - 1
      IF HDLD%(I) > = HDLD%(I - 1) GDTD 1540
 1500 E = HOLD%(I):A = PART%(I)
 1510 HDLD%(I) = HDLD%(I - 1):PART%(I) = PART%(I - 1)
 1520 HDLD%(I - 1) = E:PART%(I - 1) = A
 1530 D = 1
 1540 NEXT I
1550
      IF D = O THEN J = N
      NEXT J
1560
1,570
      FOR K = 1 TO N
1580
      IF VDID%(K) = 0 GDTD 1710
1590
     FOR J = 1 TO N
1600 R%(VDID%(K), J) = 0
1610 AN% (VDID% (K), J) = 0
1620 IN% (VDID% (K), J) = 0
1630
      NEXT J
      FOR I = 1 TO N
1640
1650
      FOR J = 1 TO N
      IF R%(I,J) = VDID%(K) THEN R%(I,J) = 0
1660
       IF AN%(I,J) = VDID%(E) THEN AN%(I,J) = 0
      IF INX(I,J) = VDIDX(K) THEN INX(I,J) = 0
1680
1690
      NEXT J
1700
      NEXT I
1710
      NEXT K
1720 COUNT = COUNT + 1
1730 FOR J = 1 TO (S - C)
1740 LEVEL%(COUNT, J) = PART%(C + J)
1750
      NEXT J
      FOR T = 1 TO N
1760
1770 VDID%(T) = 0
1780
      NEXT T
1790
      FOR T = 1 TO N
1800
      FOR J = 1 TO N
1810
      IF R%(T,J) > 0 THEN ZS = "ADVANCE":J = N:T = N
      NEXT J
1820
1830
      NEXT T
1840 C = S
1850
      IF Z6 = "ADVANCE" THEN Z6 = " ": GDTD 1240
      REM AT THIS POINT, THE REACHABILITY MATRIX 15 PARTITIONED.
      FOR 1 = 1 TO N
1870
     FOR J = 1 TO N
1890 RM%(1,J) = PR%(PART%(1), PART%(J))
1900
      NEXT J
      NEXT I
1910
1920
      PRINT
      1F DFT < > 3 GDTD 2280

1F FLAG = 1 THEN PRW 1: PRINT: PRINT: PRINT

PRINT " MDDIFIED REACHABILITY MATRIX": PRINT "
1930
1940
1950
      FOR 1 = 1 TO N
1960
1970
      IF PARTX(I) > 9 THEN PRINT ( INT (PARTX(I) / 10));" ";: GDTD 1990
      PRINT "
1980
1990
      NEXT I
2000
      PRINT : PRINT "
2010
      FOR 1 = 1 TO N
      IF PARTX(I) > 9 THEN PRINT (PARTX(I) - ( INT (PARTX(I) / 10)) # 10)
2020
     " "11 BOTD 2040
2030
      PRINT PARTX(1);" ";"
2040
      NEXT 1
2050
      PRINT : PRINT
2060
      FOR I = 1 TO N
      PRINT PARTX(I);
2070
2080
      FOR J = 1 TO N
      PRINT TAB( 4); RMX(1,J); " ";
2090
2100
      NEXT J
```



```
2110
        PRINT
  2120
        NEXT I
  2130 PRINT
  2/40 PRINT "THESE ARE THE LEVELS AND THEIR": PRINT "CONSTITUENTS: ": PRINT
  2150 FOR 1 = 1 TO N
  2160 K = 0
  2170 FOR J = 1 TO N
       IF LEVEL%(I,J) > 0 THEN k_1 = k_1' + 1
 2180
 2190
       NEXT J
 2200
      IF K > 0 THEN PRINT "LEVEL "; I;
 2210 FOR J = 1 TO N
 2220
       IF LEVEL%(I,J) = 0 GOTO 2240
 2230 PRINT TAB( 10); LEVEL%(I, J); " ";
 2240
       NEXT J
 2250
       PRINT
 2260
       NEXT I
       REM COMPUTE AND PRINT HIERARCHY
 2270
 2280 IF OPT = 1 GOTO 2700
       IF OPT = 3 6010 2300
 2285
 229Ú
       BDSUB 7000
 2300 IF FLAG = 1 THEN E = 80: PRINT IS: GOTO 2340
 2310 E = 40
 2320 PRINT : PRINT TAB( 8); "AN ALTERNATIVE HIERARCHY": PRINT : PRINT
 2330 GDTD 2350
 2340 PRINT : PRINT TAB ( 29); "AN ALTERNATIVE HIERARCHY": PRINT : PRINT
 2350 FOR I = 1 TO N
 2360 K = 0
 2370 FOR J = 1 TO N
 2380 IF LEVEL%(I,J) = 0 THEN C = J
 2390
      IF LEVELX(I,J) > 0 THEN K = K + 1
 2400 NEXT J
      IF K = 0 THEN I = N: GOTO 2610
 2410
 2420 REM COMPUTE PROPORTIONAL SPACING
2430 T = INT ((E - K + 2) / (E + 1))
2440
      FOR W = 1 TO N
2450
      IF LEVEL%(1,W) = 0 GOTO 2500
      FOR J = 1 TO T
PRINT " ";
2460
2470
2480
      NEXT J
2490
      PRINT LEVEL%(I,W);
2500
      NEXT W
2510
      REM ADD SPACES BETWEEN LEVELS
      IF FLAB = 1 GOTO 2570
FOR J = 1 TO 3
2520
2530
2540 PRINT
2550
      NEXT J
2560
      ●DTD 2600
     FOR J = 1 TO 20
2570
2580
      PRINT -
      NEXT J
2590
2600
     NEXT 1
2610
     IF FLAG = 1 80TD 2640
     IF FLAG - O THEN PRINT "PRESS ANY KEY WHEN YOU ARE READY TO": PRINT
2420
     "CONTINUE"
2630 BET Z6
2640 Z8 = CHR8 (12)
2650
     REM
           COMPUTE DIRECTED VECTORS FOR THE HIERARCHY
      PRINT ZE
2660
2670
     PRINT "THE PROGRAM IS NOW DETERMINING THE"
     PRINT "COMMUNICATION VECTORS THAT EXIST IN"
2680
     PRINT "THE HIERARCHY JUST COMPUTED. "1 PRINT
2690
2700
     FOR I = 1 TO N
2710
     FOR J = 1MTO N
2720 CX(I,J) = 01 REM
                         CLEAR CX FOR VECTOR STORAGE
2730 NEXT J
```

```
2740 NEXT 1
2750 E' = 0
2760 FULL = 0
2770 D - N
2780 COUNT = 0
2790 FOR I = D TO 1 STEP - 1
2800 REM MEASURE WIDTH OF COMM. SUBMATRIX
2810
      FOR J = 1 TO N
      IF LEVEL%(I, J) > 0 THEN COUNT = COUNT + 1
2820
2830
      NEXT J
      IF COUNT > 0 BOTO 2860
2840
2650
      NEXT I
2860 K = 0
2870 D = I - 1
2880 FULL - FULL + COUNT
2890 IF COUNT = 1 GOTO 3030
2900 REM EXAMINE EACH LEVEL FOR AN INTERNAL MAXIMAL CYCLE
2910 B = N - E
2920 C = B - COUNT + 1
     FOR W = B TO (C + 1) STEP - 1: REM MASTER LOOP
2930
     FOR A = (8 - 1) TO C STEP - 1: REM CYCLE THRU ROWS
2940
      FOR J = B TO C STEP - 1: REM CYCLE THRU COLUMNS
IF RMX(W, J) < > RMX(A, J) GOTO 3010
295U
2960
2970
      NEXT J
29'BO
      IF W = A GOTO 3010
2990 C%(PART%(W), PART%(A)) = 1
3000 \text{ C%}(PART%(A), PART%(W)) = 1
3010 NEXT A
3020 NEXT W
     IF 1 = 1 GOTO 3300
3030
3040
      REM MEASURE LENGTH OF COMM. SUBMATRIX
3050 FDR J = 1 TD N
3060
     IF LEVEL%((I - 1),J) \Rightarrow 0 THEN K =
3070 . NEXT J
3080 B = N - E
3090 C = N - E - COUNT
3100 E = E + COUNT
3110 FOR W = B TO (C + 1) BTEP - 1 REM ( ROWS IN COMM. SUBMATRIX 3120 FOR X = 0 TO (K - 1): REM ( COLUMN: IN COMM. SUBMATRIX (LENGTH) 3130 FOR J = 0 TO (K - 1): REM ( ROWS IN (I-1)ST LEVEL
3140 T - 0
3150 REM TEST ROW W FOR ALL 16 IN COMM. BURMATRIX
3160 FOR 8 = C TO (C - K + 1) STEF - 1
3170
     IF RMQ(W,S) = 1 THEN T = T + 1
3180 NEXT 6.
3190 S = C - J
3200 A - W - X - COUNT
3210 IF T = K AND RM%(A,S) = 1 THEN C%(PART%(W), PART%(A)) = 1:J =
     . - "ADVANCE"
3220 IF T < > K AND RM%(W,S) < > RM%(A,S) THEN J = K - 1:26 = "ADVANCE"
3230 NEXT J
3240 IF Z6 = "ADVANCE" THEN Z6 = CHR6 (12):, GOTO 3260
3250 Cx(PARTX(W), PARTX(A)) = 1
     NEXT X
3270 COUNT - COUNT - 1
3280 NEXT W
3290
      80TD 2780
3300 E = 0
3310 FOR X = 1 TO 2
3320
      FOR J = 1 TO N
                                          1: REM COUNT # ROWS IN TOP 2 LEVELS
2220
      IF LEVELX(X,J) > 0 THEN 8 = 8 +
      NEXT J
3340
3350
      NEXT X
     1F 8 - N 80TO 3455
3355
```

```
3360 FOR W = 1 TO COUNT: REM CYCLE THROUGH EACH ROW OF TOP LEVEL
3370 FOR X = (6 + 1) TO N: REM CYCLE THROUGH EACH ROW OF ALL LEVELS BELO
     W TOP 2
3380 T = 0
3390 FOR J = 1 TO COUNT: REM COMPARE EACH COLUMN IN THE ROW
      IF AX(PARTX(W), PARTX(J)) = AX(PARTX(X), PARTX(J)) THEN T = T + 1
3400
     NEXT J
3410
                                                          ANDTHER MATCH FOU
3420 IF T = COUNT THEN C%(PART%(X), PART%(W)) = 1: REM
     ND
3450 IF T ( > COUNT THEN C%(PART%(X), PART%(W)) = 0
3440
     NEXT X
3450
      NEXT W
      IF OPT = 1 THEN GOSUB .7000
3455
      PRINT & PRINT DS; "OPEN FILE1"
3460
     PRINT DO: "DELETE FILE1"
3470
3480 PRINT DO; "DPEN FILE1"
      PRINT DO; "WRITE FILE"
3490
3500
      PRINT N
      FOR I = 1 TO N
3510
      FOR J = 1 TO Nº
3220
3530
      PRINT CX(I,J)
      PRINT LEVEL%(I,J)
3540
3550
      NEXT J
3560
      NEXT I
      FOR I = 1 TO N
3570
      PRINT PARTX (1)
3580
3590
      PRINT TNS(I)
      NEXT I
3600
      PRINT FLAG
3610
      PRINT DO; "CLOSE FILE"
3620
      PRINT : PRINT DS: "RUN CHASE 2"
      REM ANNUNCIATOR ROUTINE
7000
      PORE 770,1731 PORE 771,481 PORE 772,1921 PORE 773,1361 PORE 774,2081
7010
      PORE 775,5: PORE 776, 206: PORE 777, 1: PORE 778, 3: PORE 779, 240: PORE
     780,9: POME 781,202
     POLE 782, 208: POLE 783, 245: POKE 784, 174: POKE 785, 0: POKE 786, 3: POLE
     787,76: POKE 788,2: POKE 789,3: POKE 790,96: POKE 791,0: POKE 792,0
7030 FDR A = 1 TD 10
7040 POFE 768,50
      FOR I = 20 TO 1 STEP - 4
7050
      POFE 769, I
7060
7070 CALL 770
7080 NEXT I
7090
      NEXT A
      FOR T = 1 TO 3
7100
      FOR I = 200 TO 50 STEP - 5
7110
      PDIE 768, I
PDIE 769, 10
7120
7130
      CALL 770
7140
7150
      NEXT 1
      NEXT T
7160
7170 RETURN
55555 END
```

```
10 REM CHASE 2 MODULE
20 REM
30 DS = CHR$ (4)
    PRINT : PRINT DS; "DPEN FILE1"
40
    PRINT DS; "READ FILE"
50
    INFUT N
60
   DIM C%(N,N), LEVEL%(N,N), RM%(N,N)
70
    DIM PARTX (N), TNG (N)
80
    FOR 1 = 1 TO N
90
    FOR J = 1 TD N
100
     INPUT C%(1,J)
110
120
     INFUT LEVEL%(I,J)
     NEXT J
130
140
     NEXT 1
     FOR 1 = 1 TO N
150
160
     INPUT PART%(I)
     INPUT THE (1)
170
180
     NEXT 1
190
     INPUT FLAG
     PRINT : PRINT DO; "CLOSE FILE"
200
     PRINT "SELECT AN OFTION."
210
                1. LIST OF DIRECTED VECTORS"
2. CREATE A CURRICULUM SEQUENCE"
3. EACH IN TURN"
     PRINT "
220
     PRINT "
230
     PRINT "
240
                   " GET BA
     PRINT "
     IF BA < 1 OR BA > 3 THEN HOME : GOTO 210
255
260
     IF SA = 2 BOTO 500
     IF FLAG = 0 THEN BPEED= 90: GOTO 290
270
     HOME : PR# 1: PRINT " "
280
     FOR W = N TO 1 STEP - 1
290
     FÓR A = 1 TO N
300
310 C%(W,W) = 0
     IF CX(PARTX(W), PARTX(A)) = 1 THEN PRINT "DRAW A DIRECTED VECTOR FROM
320
       ";PARTX(W);" TO ";PARTX(A);".": PRINT
330
     NEXT A
     NEXT W
340
350
     SPEED= 255
     IF SA = 3 THEN SA = O: GOTO 500
360
     PRINT "PREBS ANY KEY TO CONTINUE"
370
     SET ZS
380
     HOME
      VTAB B: PRINT "CHOOSE AN OFTION BELOW"
400
410
      PRINT
     MTAR 5: PRINT "1. CREATE A CURRICULUM BEQUENCE"
420
      HTAB 5: PRINT "2. RESTART THE PROGRAM"
430
      IF FLAG = 1 THEN HTAB 5: PRINT "3. PRINTOUT DIRECTED VECTORS": HTAR
      S: PRINT "4. GUIT"
      IF FLAG - O THEN HTAB 5: PRINT "3. BUIT"
450
460
      GET T
      IF T < 1 OR T > 4 BOTD 460
470
      IF FLAG - 0 BOTD 485
475
                                            OPTIONS AVAILABLE WITH PRINTER ON
      ON T BOTD 500,490,280,1240; REM
400
     ON T BOTD 500,490,1240; REM OPTIONS AVAILABLE WITH NO PRINTER PRINT & PRINT DO; "RUN MATRIX MALER"
485
490
      IF FLAS = 0 8010 520
300
510
     PRO 1
      HOME I VTAB 5
520
      PRINT "IF YOU BELECT AN OBJECTIVE FOR YOUR"
530
     PRINT "BEQUENCE WATCH IS NOT A LEGITIMATE"
PRINT "TRANSITION, YOUR CHOICE WILL BE"
PRINT "FLAGGED WITH A WHITE SQUARE TO"
540
550
```

```
PRINT "REMIND YOU."
570
    PRINT : PRINT
580
     PRINT "DURING THIS SEQUENCE CREATION ROUTINE,"
     PRINT "AFTER ENTERING AN OBJECTIVE NUMBER,"
600
    PRINT "PRESS RETURN. FOR YES/NO RESPONSES," PRINT "PRESS ONLY Y OR N. THE ROUTINE WILL"
610
620
    . PRINT "AUTOMATICALLY CONTINUE WITHOUT THE NEED"
630
     PRINT "TO PRESS RETURN."
640
     PRINT : PRINT : PRINT "PRESS RETURN WHEN YOU ARE READY"
650
     PRINT "TO CONTINUE"
     GET. ZS
670
     HOME
680
     FOR I = 1 TO N
680
     FOR J = 1 TO N
683
     IF 1 - 1 AND J - 1 GOTO 690
685
687
     GOTO 750
     PRINT "WITH WHICH OBJECTIVE DO YOU WANT TO": PRINT "START THE SEQUENC
690
     INFUT T
700
     IF T < O OR T > N THEN HOME : GOTO 690
710
720 RM%(1,1) = T
     PRINT : PRINT "THE FOLLOWING TRANSITIONS ARE ADVISED: " PRINT
750
760
     FOR COUNT = 1 TO N
770
     IF C%(T,COUNT) = 1 THEN PRINT COUNT;" ";
     NEXT COUNT
790
     NORMAL
800
810
     PRINT
     PRINT "WHERE WOULD YOU LINE TO TRANSITION"
     PRINT "ENTER ZERO TO END THE SEQUENCE."
830
     INFUT W
840
     IF W > N GOTO 840
950
     IF W = 0 THEN 1 = N:J = N: GOTO 990
     IF C%(T,W) = 1 GOTU 935
870
980
     INVERSE
     PRINT "THIS TRANSITION IS OUT OF BEQUENCE": PRINT "AND NOT ADVISED.":
690
      NORMAL
     PRINT : PRINT "DO YOU STILL WISH TO CHOOSE IT (Y/N)"
900
910
     GET ZS
     IF Z8 = "N" THEN Z8 = " "1 GOTO 820
920
930 26 - "NOSEQ"
    IF 1 = 1 AND J = 1 THEN J = J + 1
935
940 RM%(1,J) = W
950 . IF Z# = "NOSED" THEN RMX(1,J) = RMX(1,J) + 100
960 PRINT
     BOBUR 1140
990 T - W
990 NEXT J
      NEXT I REMUENCE ENDED
1000
       IF FLAG = 1 THEN PRO 1:
1020
      PRINT "HERE IS THE CURRICULUM SEQUENCE YOU HAVE DETERMINED"
 1030
       BOSUB 1140
PRINT "DD YOU MANT TO CREATE ANOTHER BEDUENCE (Y/N)? "1
 1040
 1050
       BET ZS
 1060
       FOR 1 - 1 TO N
 1080
 1090
       FOR 3 - 1 TO N
 1100 RM2(1,J) = 0
 1110
       NEXT, J
       NEXT 1
 1120
 1125
       IF IS - "N" 8070 390
       BOTD 680
1130
 1140
       FOR K = 1 TO N
       FOR E - 1 TO N
 1150
       IF RMX (K,E) = 0 THEN E = NIK = NI BOTD, 1190
 1160
       IF RMX(K,E) > 100 THEN INVERSE : PRINT RMX(K,E) - 100: NORMAL : PRINT
 1170
```

"->"!: GOTO 1190 1180 PRINT RM%(K,E);"->"; NEXT E 1190 1200 1210 PRINT : PRINT : 1220 Z6 = " ":B6 = " " 1230 RETURN HOME : VTAB 6: HTAB 10
PRINT "BYE FOR NOW"
PRINT : PRINT "TO RUN THIS AGAIN, TYPE---" 1240 1250 1260 1270 VTAB 12: HTAB 14 INVERSE PRINT 1280 1290 HTAB 14: PRINT " RUN HELLO" HTAB 14: PRINT " 1300 1310 1320 PRINT : PRINT 1330 NORMAL PRINT : PRINT "THEN PRESS' RETURN" 1340 55555 END

